Title:
Interface circuits for readout and control of a micro-hemispherical resonating gyroscope

Thumbnail Image
Author(s)
Mayberry, Curtis Lee
Authors
Advisor(s)
Ayazi, Farrokh
Advisor(s)
Editor(s)
Associated Organization(s)
Series
Supplementary to
Abstract
Gyroscopes are inertial sensors that measure the rate or angle of rotation. One of the most promising technologies for reaching a high-performance MEMS gyroscope has been development of the micro-hemispherical shell resonator. (μHSR) This thesis presents the electronic control and read-out interface that has been developed to turn the μHSR into a fully functional micro-hemispherical resonating gyroscope (μHRG) capable of measuring the rate of rotation. First, the μHSR was characterized, which both enabled the design of the interface and led to new insights into the linearity and feed-through characteristics of the μHSR. Then a detailed analysis of the rate mode interface including calculations and simulations was performed. This interface was then implemented on custom printed circuit boards for both the analog front-end and analog back-end, along with a custom on-board vacuum chamber and chassis to house the μHSR and interface electronics. Finally the performance of the rate mode gyroscope interface was characterized, showing a linear scale factor of 8.57 mv/deg/s, an angle random walk (ARW) of 34 deg/sqrt(hr) and a bias instability of 330 deg/hr.
Sponsor
Date Issued
2014-12-11
Extent
Resource Type
Text
Resource Subtype
Thesis
Rights Statement
Rights URI