Title:
Adaptive Position and Attitude-Tracking Controller for Satellite Proximity Operations Using Dual Quaternions

Thumbnail Image
Author(s)
Filipe, Nuno
Tsiotras, Panagiotis
Authors
Advisor(s)
Advisor(s)
Editor(s)
Associated Organization(s)
Series
Supplementary to
Abstract
This paper proposes a nonlinear adaptive position and attitude tracking controller for satellite proximity operations between a target and a chaser satellite. The controller requires no information about the mass and inertia matrix of the chaser satellite, and takes into account the gravitational acceleration, the gravity-gradient torque, the perturbing acceleration due to Earth's oblateness, and constant - but otherwise unknown - disturbance forces and torques. Sufficient conditions to identify the mass and inertia matrix of the chaser satellite are also given. The controller is shown to ensure almost global asymptotical stability of the translational and rotational position and velocity tracking errors. Unit dual quaternions are used to simultaneously represent the absolute and relative attitude and position of the target and chaser satellites. The analogies between quaternions and dual quaternions are explored in the development of the controller.
Sponsor
Date Issued
2015
Extent
Resource Type
Text
Resource Subtype
Article
Post-print
Rights Statement
Rights URI