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This paper proposes a nonlinear adaptive position and attitude tracking controller for
satellite proximity operations between a target and a chaser satellite. The controller re-
quires no information about the mass and inertia matrix of the chaser satellite, and takes
into account the gravitational acceleration, the gravity-gradient torque, the perturbing ac-
celeration due to Earth’s oblateness, and constant – but otherwise unknown – disturbance
forces and torques. Sufficient conditions to identify the mass and inertia matrix of the
chaser satellite are also given. The controller is shown to ensure almost global asymptoti-
cal stability of the translational and rotational position and velocity tracking errors. Unit
dual quaternions are used to simultaneously represent the absolute and relative attitude
and position of the target and chaser satellites. The analogies between quaternions and
dual quaternions are explored in the development of the controller.

Nomenclature

ω̄X
Y/Z Angular velocity of the Y-frame with respect to the Z-frame expressed in the X-frame.
τ̄B Total external moment vector applied to the body about its center of mass expressed in the body

frame.
τ̄B

∇g Gravity gradient torque expressed in the body frame.
āB
g Gravitational acceleration expressed in the body frame.
āI

J2
Perturbing acceleration due to Earth’s oblateness expressed in the inertial frame.

f̄B Total external force vector applied to the body expressed in the body frame.
ĪB Inertia matrix of the chaser satellite.
r̄X
Y/Z Translation vector from the origin of the Z-frame to the origin of the Y-frame expressed in the

X-frame.
v̄X
Y/Z Linear velocity of the Y-frame with respect to the Z-frame expressed in the X-frame.

W(.) Function W : [0,∞)→ R8×7.
µ Earth’s gravitational parameter.
In Identity matrix of size n.
Kp,Kd,Ki,Kj ,KIij ,Km Control gains.
m Mass of chaser satellite.
Re Earth’s mean equatorial radius.
∗ Matrix-quaternion multiplication.
H Set of quaternions.
Hs Set of scalar quaternions.
Hu Set of unit quaternions.
Hv Set of vector quaternions.
1 Quaternion (0̄, 1).
0 Quaternion (0̄, 0).
qY/Z Unit quaternion from the Z-frame to the Y-frame.
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1̂ Dual quaternion 1 + ε0.
0̂ Dual quaternion 0 + ε0.
ω̂X

Y/Z Dual velocity of the Y-frame with respect to the Z-frame expressed in the X-frame.

f̂B Total external dual force applied to the body about its center of mass expressed in body coordinates.
f̂B
c Dual control force expressed in body coordinates.

f̂B

d Dual disturbance force expressed in body coordinates.
q̂Y/Z Unit dual quaternion from the Z-frame to the Y-frame.
ε Dual unit.
Hud Set of unit dual quaternions.
Hd Set of dual quaternions.
Hrd Set of dual scalar quaternions with zero dual part.
Hsd Set of dual scalar quaternions.
Hvd Set of dual vector quaternions.

∆f̂B

d Dual disturbance force estimation error.
∆MB Dual matrix estimation error.
h(., .) Function h : Hvd ×Hvd → R7.
? Matrix-dual-quaternion multiplication.̂̂
fB

d Estimate of the dual disturbance force.

M̂B Estimate of the dual inertia matrix.
MB Dual inertia matrix.

Introduction

Several agencies and organizations around the world are investigating satellite proximity operations as
an enabling technology for several space missions such as on-orbit satellite inspection, health monitoring,
surveillance, servicing, refueling, and optical interferometry.1–4 One of the biggest challenges introduced
by this technology is the need to simultaneously and accurately track both time-varying relative position
and attitude references trajectories in order to avoid collisions between the satellites and achieve mission
objectives.

The problem of deriving control laws for satellite proximity operations has a long history. For example, in
Ref. [4], nonlinear control and adaptation laws were designed ensuring almosta global asymptotic convergence
of the position and attitude errors, despite the presence of unknown mass and inertia parameters, using the
vectrix formalism. However, the controller in Ref. [4] is a very high-order dynamic compensator, which
limits its applicability, especially for satellites with limited on-board computational resources. In Ref. [3],
three different nonlinear position and attitude controllers for spacecraft formation flying are presented. All
these controllers require full knowledge of the mass and inertia matrix of the satellite. In Ref. [6], a relative
position and attitude tracking controller that requires no linear and angular velocity measurements and
no mass and inertia matrix information is presented. However, as explained in Ref. [7], if the reference
trajectory is not sufficiently exciting, this controller cannot guarantee that the relative position and attitude
errors will converge to zero. In Ref. [1], an adaptive terminal sliding-mode pose (i.e., position and attitude)
tracking controller is proposed, based on dual quaternions, that does not require full knowledge of the mass
and inertia matrix of the spacecraft. This controller takes into account the gravitational acceleration, the
gravity-gradient torque, constant – but otherwise unknown – disturbance forces and torques, but not the
perturbing acceleration due to Earth’s oblateness. In addition, the convergence region of the controller is
not specified in Ref. [1], and no conditions for identifying the mass and inertia matrix of the spacecraft are
given. Moreover, this controller requires a priori knowledge of upper bounds on the mass, on the maximum
eigenvalue of the inertia matrix, on the constant but otherwise unknown disturbance forces and torques, on
the desired relative linear and angular velocity between the spacecraft and their first derivative, on the linear
and angular velocity of the chaser spacecraft with respect to the inertial frame, and on the position of the
chaser spacecraft with respect to the inertial frame.

Similarly to Ref. [1], this paper proposes an adaptive pose-tracking controller based on dual quaternions.8

aAs is usually done in literature, the terminology almost globally asymptotically stable controller will be used to designate
controllers that are asymptotically stable over an open and dense set. It has been shown that this is the best one can achieve
with a continuous controller for the rotational motion, since the special group of rotation matrices SO(3) is a compact manifold.5
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However, unlike Ref. [1], the controller proposed in this paper does not require a priori knowledge of any
upper bounds on the system parameters or states. Another contribution of this paper with respect to Ref. [1]
is the consideration of the perturbing acceleration due to Earth’s oblateness, which is typically the largest
perturbing acceleration on a satellite below GEO.9 Moreover, unlike Ref. [1], the controller proposed in
this paper is proven to ensure almost global asymptotical stability of the linear and rotational position and
velocity tracking errors. With respect to Ref. [4], the controller proposed in this paper has only as many
states as unknown parameters and, hence, requires less computational resources. A final contribution of this
paper with respect to existing literature is the definition of sufficient conditions for both mass and inertia
matrix identification. Although these conditions are not needed for convergence, they can be useful to design
maneuvers to identify these parameters, if needed (e.g., after a docking maneuver, after the deployment of
antennas or solar panels, etc).

The use of dual quaternions, in addition to the insight it provides to derive the controller, it also allows
to write the controller in a compact form. Owing to their numerous advantages in providing a “natural” rep-
resentation of the combined translational and rotational kinematics, dual quaternions have been successfully
applied to inertial navigation,10 control of rigid body kinematics11,12 and dynamics,1,8, 13–18 inverse kine-
matic analysis,19,20 computer vision21,22 and animation.23 Dual quaternions are an extension of classical
quaternions and, as already mentioned, they provide a compact way to represent the attitude and position
of a rigid body. Dual quaternions are actually closely related to Chasles theorem, which states that the
general displacement of a rigid body can be represented by a rotation about an axis (called the screw axis)
and a translation along that axis, creating a screw-like motion.10 Compared to other representations of this
screw-like motion, such as dual orthogonal 3-by-3 matrices, dual special unitary 2-by-2 matrices, and dual
Pauli spin matrices, dual quaternions have been found to be the most efficient representation to perform basic
pose transformations in terms of storage requirements and number of operations.24 Under the same metrics,
dual quaternions have also been found to be more efficient than 4-by-4 homogeneous matrix transformations
and Rodriguez parameters/translation vector pairs for solving the direct kinematic problem in robotics.25

Moreover, dual quaternions allow attitude and position controllers to be written as a single control law. It
has also been shown that they automatically take into account the natural coupling between the rotational
and translational motions.12,14 However, the most useful property of dual quaternions is that the combined
translational and rotational kinematic and dynamic equations of motion written in terms of dual quaternions
have the same form as the rotational-only kinematic and dynamic equations of motion written in terms of
quaternions.17 This appealing property has been recently used in Refs. [8, 16, 17], where it was shown that
it is possible to extend an attitude controller with some desirable properties into a combined position and
attitude controller with equivalent desirable properties, by often simply substituting quaternions with dual
quaternions in the attitude-only quaternion control law and corresponding Lyapunov function. This paper
extends the results presented in Ref. [26] to include position-tracking and mass identification.

The development of combined position and attitude controllers from existing attitude controllers has some
advantages over techniques based on the special Euclidean group SE(3) where rotations are represented
directly by rotation matrices.27–29 In the latter, asymptotically stability of the combined rotational and
translational motion is proven by either defining two different error functions for the position and attitude
error29 or, in two steps, by first proving the asymptotical stability of the rotational motion before the
asymptotical stability of the translational motion can be proven27 (recall that the translational motion
depends on the rotational motion). The use of dual quaternions to describe the kinematics allows the use of a
single error function, the error dual quaternion (defined by analogy to the classical rotation error quaternion)
to represent the combined position and attitude error. As a result, the asymptotic stability of the combined
rotational and translational motion is proven in a single step by using a Lyapunov function with the same
form as the Lyapunov function used to prove the asymptotic stability of the rotational-only controller. On the
other hand, whereas quaternions produce two closed-loop equilibrium points (since quaternions cover SO(3)
twice,30 both representing the identity rotation matrix), the use of rotation matrices produces a minimum of
four closed-loop equilibrium points,27,28 only one of which is the identity rotation matrix. On the downside,
dual quaternions inherit the so-called unwinding phenomenon from classical quaternions.5 Solutions for this
problem are well-known and some are suggested in this paper. Finally, note that full knowledge of the mass
and inertia matrix are required to implement the tracking controllers proposed in Refs. [27] and [28].

The paper is organized as follows. In Section , unit quaternions and unit dual quaternions are introduced.
Then, the relative kinematic and dynamic equations of motion for satellite proximity operations written in
terms of dual quaternions are derived in Section . In Section , the adaptive attitude and position tracking
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controller for satellite proximity operations is deduced and proved to ensure almost global asymptotical
stability of the translational and rotational position and velocity tracking errors. Then, sufficient conditions
for mass and inertia matrix identification are given in Section . Finally, the proposed controller is analyzed
and validated through numerical examples in Section .

Mathematical Preliminaries

Most of the mathematical preliminaries in this section can be found in Refs. [8, 16, 17]. For the benefit
of the reader, the main properties of quaternions and dual quaternions, that are essential for the results
presented in this paper, are summarized here.

Quaternions

A quaternion is defined as q = q1i + q2j + q3k + q4, where q1, q2, q3, q4 ∈ R and i, j, and k satisfy
i2 = j2 = k2 = −1, i = jk = −kj, j = ki = −ik, and k = ij = −ji.14 A quaternion can also be represented
as the ordered pair q = (q̄, q4), where q̄ = [q1 q2 q3]T ∈ R3 is the vector part of the quaternion and q4 ∈ R
is the scalar part of the quaternion. Vector quaternions and scalar quaternions are quaternions with zero
scalar part and vector part, respectively. The set of quaternions, vector quaternions, and scalar quaternions
will be denoted by H = {q : q = q1i + q2j + q3k + q4, q1, q2, q3, q4 ∈ R}, Hv = {q ∈ H : q4 = 0}, and
Hs = {q ∈ H : q1 = q2 = q3 = 0}, respectively.

The basic operations on quaternions are defined as follows:

Addition: a+ b = (ā+ b̄, a4 + b4) ∈ H,
Multiplication by a scalar: λa = (λā, λa4) ∈ H,

Multiplication: ab=(a4b̄+ b4ā+ ā× b̄, a4b4 − ā · b̄) ∈ H,
Conjugation: a∗ = (−ā, a4) ∈ H,

Dot product: a · b = 1
2 (a∗b+ b∗a) = 1

2 (ab∗ + ba∗) = (0̄, a4b4 + ā · b̄) ∈ Hs,
Cross product: a× b = 1

2 (ab− b∗a∗) = (b4ā+ a4b̄+ ā× b̄, 0) ∈ Hv,
Norm: ‖a‖2 = aa∗ = a∗a = a · a = (0̄, a2

4 + ā · ā) ∈ Hs,
Scalar part: sc

(
a
)

= (0̄, a4) ∈ Hs,
Vector part: vec

(
a
)

= (ā, 0) ∈ Hv,

where a, b ∈ H, λ ∈ R, and 0̄ = [0 0 0]T. Note that the quaternion multiplication is not commutative. In this
paper, the quaternions (0̄, 1) and (0̄, 0) will be denoted by 1 and 0, respectively.

The multiplication of a matrix M ∈ R4×4 with a quaternion q ∈ H will be defined as M ∗ q = (M11q̄ +
M12q4,M21q̄ +M22q4) ∈ H, where

M =

[
M11 M12

M21 M22

]
,

M11 ∈ R3×3, M12 ∈ R3×1, M21 ∈ R1×3, and M22 ∈ R. This definition is analogous to the multiplication of
a 4-by-4 matrix with a 4-dimensional vector. It can be easily shown that the following property holds from
the previous definitions:

(M ∗ a) · b = a · (M T ∗ b), a, b ∈ H, M ∈ R4×4.

Finally, the L∞-norm of a function u : [0,∞)→ H is defined as ‖u‖∞ = supt≥0 ‖u(t)‖. Moreover, u ∈ L∞
if and only if ‖u‖∞ <∞.

Attitude Representation with Unit Quaternions.

The relative orientation of a body frame with respect to the inertial frame can be represented by the unit

quaternion qB/I =
(

sin(φ2 )n̄, cos(φ2 )
)

, where the body frame is said to be rotated with respect to the inertial

frame about the unit vector n̄ by an angle φ. Note that qB/I is a unit quaternion because it belongs to the
set Hu = {q ∈ H : q · q = 1}. The body coordinates of a vector, v̄B, can be calculated from the inertial
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coordinates of that same vector, v̄I, and vice-versa, via vB = q∗B/Iv
IqB/I and vI = qB/Iv

Bq∗B/I, where vB = (v̄B, 0)
and vI = (v̄I, 0).

Quaternion Representation of the Rotational Kinematic Equations.

The rotational kinematic equations of the body frame and of a frame with some desired attitude, both with
respect to the inertial frame and represented by the unit quaternions qB/I and qD/I, respectively, are given
by q̇B/I=

1
2qB/Iω

B
B/I=

1
2ω

I
B/IqB/I and q̇D/I=

1
2qD/Iω

D
D/I=

1
2ω

I
D/IqD/I, where ωX

Y/Z = (ω̄X
Y/Z, 0) and ω̄X

Y/Z is the angular
velocity of the Y-frame with respect to the Z-frame expressed in the X-frame. The error quaternion

qB/D = q∗D/IqB/I (1)

is the unit quaternion that rotates the desired frame onto the body frame. By differentiating Eq. (1), the
kinematic equations of the error quaternion turn out to be

q̇B/D = 1
2qB/Dω

B

B/D = 1
2ω

D

B/DqB/D, (2)

where ωB
B/D = ωB

B/I − ωB
D/I (and ωD

B/D = ωD
B/I − ωD

D/I).

Dual Quaternions

A dual quaternion is defined as q̂ = qr + εqd, where ε is the dual unit defined by ε2 = 0 and ε 6= 0. The
quaternions qr, qd ∈ H are called the real part and the dual part of the dual quaternion, respectively.

Dual vector quaternions and dual scalar quaternions are dual quaternions formed from vector quaternions
(i.e., qr, qd ∈ Hv) and scalar quaternions (i.e., qr, qd ∈ Hs), respectively. The set of dual quaternions, dual
scalar quaternions, dual vector quaternions, and dual scalar quaternions with zero dual part will be denoted
by Hd = {q̂ : q̂ = qr+ εqd, qr, qd ∈ H}, Hsd = {q̂ : q̂ = qr+ εqd, qr, qd ∈ Hs}, Hvd = {q̂ : q̂ = qr+ εqd, qr, qd ∈
Hv}, and Hrd = {q̂ : q̂ = qr + ε0, qr ∈ Hs}, respectively.

The basic operations on dual quaternions are defined as follows:1,12

Addition: â+ b̂ = (ar + br) + ε(ad + bd) ∈ Hd,
Multiplication by a scalar: λâ = (λar) + ε(λad) ∈ Hd,

Multiplication: âb̂ = (arbr) + ε(arbd + adbr) ∈ Hd,
Conjugation: â∗ = a∗r + εa∗d ∈ Hd,

Swap: âs = ad + εar ∈ Hd,

Dot product: â · b̂= 1
2 (â∗b̂+ b̂∗â)= 1

2 (âb̂∗ + b̂â∗)=ar · br + ε(ad · br + ar · bd) ∈ Hsd,

Cross product: â× b̂ = 1
2 (âb̂− b̂∗â∗) = ar × br + ε(ad × br + ar × bd) ∈ Hvd,

Dual norm: ‖â‖2d = ââ∗ = â∗â = â · â = (ar · ar) + ε(2ar · ad) ∈ Hsd,
Scalar part: sc

(
â
)

= sc
(
ar
)

+ ε sc
(
ad
)
∈ Hsd,

Vector part: vec
(
â
)

= vec
(
ar
)

+ ε vec
(
ad
)
∈ Hvd,

where â, b̂ ∈ Hd and λ ∈ R. Note that the dual quaternion multiplication is not commutative. In this paper,
the dual quaternions 1 + ε0 and 0 + ε0 will be denoted by 1̂ and 0̂, respectively.

Since the dot product and dual norm of dual quaternions yield, in general, a dual number, the norm of
a dual quaternion will be defined in this paper as1,31

‖â‖2 = â ◦ â ∈ Hrd, (3)

where ◦ denotes the dual quaternion circle product given by â ◦ b̂ = ar · br + ad · bd ∈ Hrd, where â, b̂ ∈ Hd.
Note that the dual quaternion circle product is commutative. The definition of norm of a dual quaternion
is not unique and other authors have used alternative norms, for example, based on the logarithm of the
dual quaternion.15,32,33 The attitude-part of the norm of a dual quaternion given by Eq. (3) matches the
quaternion norm used in Ref. [26]. Hence, the norm of a dual quaternion given by Eq. (3) is preferred in
this paper as it will allow a relatively straightforward extension of the attitude-only controller presented in
Ref. [26] into a combined position and attitude controller.
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The multiplication of a matrix M ∈ R8×8 with a dual quaternion q̂ ∈ Hd will be defined as M ? q̂ =
(M11 ∗ qr +M12 ∗ qd) + ε(M21 ∗ qr +M22 ∗ qd) ∈ Hd, where

M =

[
M11 M12

M21 M22

]
, M11,M12,M21,M22 ∈ R4×4.

This definition is analogous to the multiplication of a 8-by-8 matrix with a 8-dimensional vector.
It can be shown that the following properties17 follow from the previous definitions:

â◦(b̂ĉ) = b̂s◦(âsĉ∗) = ĉs◦(b̂∗âs) ∈ R, â, b̂, ĉ ∈ Hd, (4)

â◦(b̂×ĉ)=b̂s◦(ĉ×âs)=ĉs◦(âs×b̂), â, b̂, ĉ ∈ Hvd, (5)

â× â = 0̂, â ∈ Hvd, (6)

â× b̂ = −b̂× â, â, b̂ ∈ Hvd, (7)

âs ◦ b̂s = â ◦ b̂, â, b̂ ∈ Hd, (8)

‖âs‖ = ‖â‖, â ∈ Hd, (9)

‖â∗‖ = ‖â‖, â ∈ Hd, (10)

(M ? â) ◦ b̂ = â ◦ (M T ? b̂), â, b̂ ∈ Hd, M ∈ R8×8, (11)

|â ◦ b̂| ≤ ‖â‖‖b̂‖, â, b̂ ∈ Hd, (12)

‖âb̂‖ ≤
√

3/2 ‖â‖‖b̂‖, â, b̂ ∈ Hd. (13)

Finally, the L∞-norm of a function û : [0,∞) → Hd is defined as ‖û‖∞ = supt≥0 ‖û(t)‖. Moreover,
û ∈ L∞ if and only if ‖û‖∞ <∞.

Attitude and Position Representation with Unit Dual Quaternions.

The position and orientation (i.e., pose) of a body frame with respect to the inertial frame can be represented
by a unit quaternion qB/I ∈ Hu and by a translation vector r̄B/I ∈ R3. Alternatively, the pose of the body
frame with respect to the inertial frame can be represented more compactly by the unit dual quaternion10

q̂B/I = qB/I+ε
1
2r

I
B/IqB/I = qB/I+ε

1
2qB/Ir

B
B/I, where rX

Y/Z = (r̄X
Y/Z, 0) and r̄X

Y/Z = [xX
Y/Z y

X
Y/Z z

X
Y/Z]

T

is the translation
vector from the origin of the Z-frame to the origin of the Y-frame expressed in the X-frame. Note that q̂B/I

is a unit dual quaternion because it belongs to the set16 Hud = {q̂ ∈ Hd : q̂ · q̂ = q̂q̂∗ = q̂∗q̂ = ‖q̂‖d = 1̂}.

Lemma 1. The unit dual quaternion q̂Y/Z = qY/Z + ε 1
2qY/Zr

Y
Y/Z ∈ L∞, if and only if rY

Y/Z ∈ L∞.

Proof. If q̂Y/Z ∈ L∞, then qY/Zr
Y
Y/Z ∈ L∞. Note that the unit quaternion qY/Z ∈ L∞ by definition. Moreover,

since ‖qY/Zr
Y
Y/Z‖ = ‖rY

Y/Z‖, this also implies that rY
Y/Z ∈ L∞. On the other hand, it is trivial to see that if

qY/Z, r
Y
Y/Z ∈ L∞, then q̂Y/Z = qY/Z + ε 1

2qY/Zr
Y
Y/Z ∈ L∞ as well.

Dual Quaternion Representation of the Rotational and Translational Kinematic Equations.

The kinematic equations of the body frame and of a frame with some desired position and attitude, both with
respect to the inertial frame and represented by the unit dual quaternions q̂B/I and q̂D/I = qD/I + ε 1

2r
I
D/IqD/I =

qD/I + ε 1
2qD/Ir

D
D/I, respectively, are given by10

˙̂qB/I=
1
2 ω̂

I

B/Iq̂B/I=
1
2 q̂B/Iω̂

B

B/I and ˙̂qD/I=
1
2 ω̂

I

D/Iq̂D/I=
1
2 q̂D/Iω̂

D

D/I, (14)

where ω̂X
Y/Z is the dual velocity of the Y-frame with respect to the Z-frame expressed in the X-frame, so that

ω̂X
Y/Z = ωX

Y/Z + ε(vX
Y/Z + ωX

Y/Z × rX
X/Y), vX

Y/Z = (v̄X
Y/Z, 0), and v̄X

Y/Z is the linear velocity of the Y-frame with
respect to the Z-frame expressed in the X-frame.

By direct analogy to Eq. (1), the dual error quaternion1,14,15,17 is defined as

q̂B/D , q̂∗D/Iq̂B/I = qB/D + ε 1
2qB/Dr

B

B/D, (15)

where rB
B/D = rB

B/I − rB
D/I. As illustrated in Figure 1, the dual error quaternion represents the rotation (qB/D)

and the translation (rB
B/D) necessary to align the desired frame with the body frame. It can be shown16 that
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D/I
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I
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I
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K

D
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I
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D
I

D
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D
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B/D B/I D/I
r r r 

Figure 1. Relation between frames.

q̂B/D is a unit dual quaternion. By differentiating Eq. (15) and using Eq. (14), the kinematic equations of
the dual error quaternion turn out to be1,15,17

˙̂qB/D = 1
2 q̂B/Dω̂

B

B/D = 1
2 ω̂

D

B/Dq̂B/D, (16)

where ω̂B
B/D = ω̂B

B/I−ω̂B
D/I is the dual relative velocity between the body frame and the desired frame expressed

in the body frame. Note that ω̂B
D/I = q̂∗B/Dω̂

D
D/Iq̂B/D and ω̂D

B/I = q̂B/Dω̂
B
B/Iq̂
∗
B/D. Note also that the kinematic

equations of the dual error quaternion, Eq. (16), and of the error quaternion, Eq. (2), have the same form.

Dual Quaternion Representation of the Relative Dy-

namic Equations for Satellite Proximity Operations
The dual quaternion representation of the rigid body dynamic equations assuming constant (or slowly

varying) mass and inertia matrix is given by1,17

( ˙̂ωB
B/D)

s=(MB)−1?
(
f̂B−(ω̂B

B/D+ω̂
B
D/I)×

(
MB ? ((ω̂B

B/D)
s+(ω̂B

D/I)
s)
)

−MB?(q̂∗B/D
˙̂ωD
D/Iq̂B/D)

s−MB?(ω̂B
D/I×ω̂B

B/D)
s
)
,

(17)

where f̂B = fB + ετB is the total external dual force applied to the body about its center of mass expressed
in body coordinates, fB = (f̄B, 0), f̄B is the total external force vector applied to the body, τB = (τ̄B, 0), and
τ̄B is the total external moment vector applied to the body about its center of mass. Finally, MB ∈ R8×8 is
the dual inertia matrix 16 defined as

MB=


mI3 03×1 03×3 03×1

01×3 1 01×3 0

03×3 03×1 ĪB 03×1

01×3 0 01×3 1

 , IB=

[
ĪB 03×1

01×3 1

]
, ĪB=

I11 I12 I13

I12 I22 I23

I13 I23 I33

 , (18)

ĪB ∈ R3×3 is the mass moment of inertia of the body about its center of mass written in the body frame,
and m is the mass of the body. Note that the dual inertia matrix is symmetric. Also note the similarity
between the dual quaternion representation of the combined rotational and translational dynamic equations
given by Eq. (17) and the quaternion representation of the rotational(-only) dynamic equations given by1

ω̇B

B/D=(IB)−1 ∗
(
τB−(ωB

B/D+ωB

D/I)×
(
IB ∗ (ωB

B/D+ωB

D/I)
)
−IB ∗ (q∗B/Dω̇

D

D/IqB/D)−IB ∗ (ωB

D/I×ωB

B/D)
)
.

Other dual quaternion representations of the rigid body dynamic equations exist. These alternative repre-
sentations are compared with Eq. (17) in Ref. [16].
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For the case of a spacecraft in Earth orbit, the total external dual force acting on the body will be
decomposed in this paper as follows:

f̂B = f̂B

g + f̂B

∇g + f̂B

J2 + f̂B

d + f̂B

c , (19)

where f̂B
g = mâB

g , â
B
g = aB

g + ε0, aB
g = (āB

g , 0), āB
g is the gravitational acceleration given by āB

g = −µ r̄BB/I

‖r̄B
B/I
‖3 ,

µ = 398600.4418 km3/s2 is Earth’s gravitational parameter,9 f̂B

∇g = 0 + ετB

∇g, τ
B

∇g = (τ̄B

∇g, 0), τ̄B

∇g is the

gravity gradient torque1 given by τ̄B

∇g = 3µ
r̄BB/I×(ĪBr̄BB/I)

‖r̄B
B/I
‖5 , f̂B

J2
= mâB

J2
, âB

J2
= aB

J2
+ ε0, aB

J2
= (āB

J2
, 0), āB

J2
is

the perturbing acceleration due to Earth’s oblateness34 given by

āI

J2 = −3

2

µJ2R
2
e

‖r̄I
B/I‖4


(1− 5(

zIB/I

‖r̄I
B/I
‖ )

2)
xI
B/I

‖r̄I
B/I
‖

(1− 5(
zIB/I

‖r̄I
B/I
‖ )

2)
yIB/I

‖r̄I
B/I
‖

(3− 5(
zIB/I

‖r̄I
B/I
‖ )

2)
zIB/I

‖r̄I
B/I
‖

 , (20)

J2 = 0.0010826267, Re = 6378.137 km is Earth’s mean equatorial radius,9 f̂B

d = fB

d + ετB

d is the dual

disturbance force, and f̂B
c = fB

c + ετB
c is the dual control force. This paper does not explicitly take into

account other disturbance forces and torques due to, for example, atmospheric drag, solar radiation, and
third-bodies. Instead, this paper assumes that f̂B

d is a constant (or slowly varying), but otherwise unknown,
dual force that captures all neglected (but small) external forces and torques. For the sake of simplicity and

compactness, it is more convenient to write f̂B
g , f̂B

∇g, and f̂B

J2
in terms of the dual inertia matrix as follows:

f̂B
g = MB ? âB

g , f̂B

∇g =
3µr̂BB/I

‖r̂B
B/I
‖5 × (MB ? (r̂B

B/I)
s), and f̂B

J2
= MB ? âB

J2
, where r̂B

B/I = rB
B/I + ε0.

Adaptive Position and Attitude Tracking Controller

The main result of this paper is an adaptive pose-tracking controller for satellite proximity operations
that requires no information about the mass and inertia matrix of the body. In particular, it requires no
bounds on the mass and/or eigenvalues of the inertia matrix. The next theorem presents this controller
and shows that it ensures almost global asymptotic stability of the linear and angular position and velocity
tracking errors.

Theorem 1. Consider the relative kinematic and dynamic equations given by Eq. (16) and Eq. (17). Let
the dual control force be defined by the feedback control law

f̂B
c =−M̂B ? âB

g−
3µr̂BB/I

‖r̂BB/I‖5
× (M̂B ? (r̂BB/I)

s)−M̂B ? âB
J2
−̂̂fB

d −vec
(
q̂∗B/D(q̂

s
B/D − 1̂

s)
)
−Kd ? ŝ

s (21)

+ω̂B
B/I×(M̂B ? (ω̂B

B/I)
s)+M̂B?(q̂∗B/D

˙̂ωD
D/Iq̂B/D)

s+M̂B ? (ω̂B
D/I×ω̂B

B/D)
s−M̂B ? (Kp ?

d

dt
(q̂∗B/D(q̂

s
B/D − 1̂

s)))s,

where
ŝ = ω̂B

B/D + (Kp ? (q̂∗B/D(q̂sB/D − 1̂s)))s, (22)

Kp =

[
Kr 04×4

04×4 Kq

]
, Kd =

[
Kv 04×4

04×4 Kω

]
, (23)

Kr =

[
K̄r 03×1

01×3 0

]
,Kq =

[
K̄q 03×1

01×3 0

]
,Kv =

[
K̄v 03×1

01×3 0

]
,Kω =

[
K̄ω 03×1

01×3 0

]
, (24)

K̄r, K̄q, K̄v, K̄ω ∈ R3×3 are positive definite matrices, M̂B is an estimate of the dual inertia matrix updated
according to

d

dt
v(M̂B) = Ki

[
h(ŝs,−(q̂∗B/D

˙̂ωD

D/Iq̂B/D)s−(ω̂B

D/I × ω̂B

B/D)s+(Kp?
d(q̂∗B/D(q̂sB/D − 1̂s))

dt
)s+âB

g+âB

J)

− h((ŝ× ω̂B

B/I)
s, (ω̂B

B/I)
s) + h((ŝ×

µr̂B
B/I

‖r̂B
B/I‖

)s, (r̂B

B/I)
s)
]
, (25)

8



Ki ∈ R7×7 is a positive definite matrix, v(MB) = [I11 I12 I13 I22 I23 I33 m]T is a vectorized version of the dual

inertia matrix MB, the function h : Hvd×Hvd → R7 is defined as â◦(MB?b̂) = h(â, b̂)Tv(MB) = v(MB)Th(â, b̂)

or, equivalently, h(â, b̂) = [a5b5, a6b5+a5b6, a7b5+a5b7, a6b6, a7b6+a6b7, a7b7, a1b1+a2b2+a3b3]T,
̂̂
fB

d is an
estimate of the dual disturbance force updated according to

d

dt
̂̂
fB

d = Kj ? ŝ
s, (26)

Kj =

[
Kf 04×4

04×4 Kτ

]
, Kf =

[
K̄f 03×1

01×3 1

]
, Kτ =

[
K̄τ 03×1

01×3 1

]
, (27)

and K̄f , K̄τ ∈ R3×3 are positive definite matrices. Assume that q̂D/I, ω̂
D
D/I,

˙̂ωD
D/I ∈ L∞ and r̂B

B/I 6= 0̂. Then, for

all initial conditions, limt→∞ q̂B/D = ±1̂ (i.e., limt→∞ qB/D = ±1 and limt→∞ rB
B/D = 0), limt→∞ ω̂B

B/D = 0̂

(i.e., limt→∞ ωB
B/D = 0 and limt→∞ vB

B/D = 0), and v(M̂B),
̂̂
fB

d ∈ L∞.

Proof. First, define the dual inertia matrix and dual disturbance force estimation errors as

∆MB = M̂B −MB and ∆f̂B

d =
̂̂
fB

d − f̂
B

d , (28)

respectively. Note that q̂B/D = ±1̂, ŝ = 0̂, v(∆MB) = 07×1, and ∆f̂B

d = 0̂ are the equilibrium conditions of
the closed-loop system formed by Eqs. (17), (19), (16), (25), and (26). Consider now the following candidate

Lyapunov function for the equilibrium point (q̂B/D, ŝ, v(∆MB), ∆f̂B

d ) = (+1̂, 0̂, 07×1, 0̂):

V (q̂B/D, ŝ, v(∆MB), ∆f̂B

d ) = (q̂B/D − 1̂) ◦ (q̂B/D − 1̂) + 1
2 ŝ

s ◦ (MB ? ŝs)

+ 1
2v(∆MB)TK−1

i v(∆MB) + 1
2∆f̂

B

d ◦ (K−1
j ? ∆f̂B

d ).
(29)

Note that V is a valid candidate Lyapunov function since V (q̂B/D = 1̂, ŝ = 0̂, v(∆MB) = 07×1, ∆f̂
B

d = 0̂) = 0

and V (q̂B/D, ŝ, v(∆MB), ∆f̂B

d ) > 0 for all (q̂B/D, ŝ, v(∆MB), ∆f̂B

d ) ∈ Hud ×Hvd ×R7 ×Hvd\{1̂, 0̂, 07×1, 0̂}. Note
also that the real part of the first three terms of the Lyapunov function are equal to the Lyapunov function
used in Ref. [26]. The time derivative of V is equal to

V̇ = 2(q̂B/D − 1̂) ◦ ˙̂qB/D + ŝs ◦ (MB ? ˙̂ss) + v(∆MB)TK−1
i

d

dt
v(∆MB) +∆f̂B

d ◦ (K−1
j ?

d

dt
∆f̂B

d ).

Then, since from Eq. (16), ω̂B
B/D = 2q̂∗B/D

˙̂qB/D, Eq. (22) can be rewritten as ˙̂qB/D = 1
2 q̂B/Dŝ − 1

2 q̂B/D(Kp ?

(q̂∗B/D(q̂sB/D− 1̂s)))s, which can then be plugged into V̇ , together with the time derivative of Eq. (22), to yield

V̇=(q̂B/D − 1̂) ◦ (q̂B/Dŝ− q̂B/D(Kp ? (q̂∗B/D(q̂sB/D − 1̂s)))s) + ŝs ◦ (MB ? ( ˙̂ωB

B/D)s)

+ŝs ◦ (MB ? (Kp ?
d(q̂∗B/D(q̂sB/D − 1̂s))

dt
)s) + v(∆MB)TK−1

i

d

dt
v(∆MB) +∆f̂B

d ◦ (K−1
j ?

d

dt
∆f̂B

d ).
(30)

Applying Eq. (4), inserting Eq. (17), and using ω̂B
B/D + ω̂B

D/I = ω̂B
B/I yields

V̇=ŝs ◦ (q̂∗B/D(q̂sB/D − 1̂s))− (Kp ? (q̂∗B/D(q̂sB/D − 1̂s))) ◦ (q̂∗B/D(q̂sB/D − 1̂s))+ŝs ◦ (f̂B−ω̂B

B/I×
(
MB ? (ω̂B

B/I)
s
)

−MB?(q̂∗B/D
˙̂ωD

D/Iq̂B/D)s−MB?(ω̂B

D/I×ω̂B

B/D)s)+ŝs ◦ (MB ? (Kp ?
d(q̂∗B/D(q̂sB/D − 1̂s))

dt
)s)

+ v(∆MB)TK−1
i

d

dt
v(∆MB) +∆f̂B

d ◦ (K−1
j ?

d

dt
∆f̂B

d ).

(31)

Introducing the feedback control law given by Eq. (21) and using Eq. (5), Eq. (8), and the commutativity
of the dual quaternion circle product yields

V̇=− (q̂∗B/D(q̂sB/D − 1̂s)) ◦ (Kp ? (q̂∗B/D(q̂sB/D − 1̂s)))+ŝs ◦ (ω̂B

B/I×
(
∆MB ? (ω̂B

B/I)
s
)

+∆MB?(q̂∗B/D
˙̂ωD

D/Iq̂B/D)s+∆MB?(ω̂B

D/I×ω̂B

B/D)s

−∆MB ? (Kp ?
d(q̂∗B/D(q̂sB/D − 1̂s))

dt
)s −∆MB ? âB

g −
3µr̂B

B/I

‖r̂B
B/I‖5

× (∆MB ? (r̂B

B/I)
s)

−∆MB ? âB

J2−∆f̂
B

d )−ŝs ◦ (Kd ? ŝ
s)+v(∆MB)TK−1

i

d

dt
v(∆MB) +∆f̂B

d ◦ (K−1
j ?

d

dt
∆f̂B

d )

(32)
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or

V̇=− (q̂∗B/D(q̂sB/D − 1̂s)) ◦ (Kp ? (q̂∗B/D(q̂sB/D − 1̂s)))+(ŝ× ω̂B

B/I)
s ◦ (∆MB ? (ω̂B

B/I)
s)

+ŝs ◦ (∆MB?(q̂∗B/D
˙̂ωD

D/Iq̂B/D)s +∆MB?(ω̂B

D/I×ω̂B

B/D)s

−∆MB ? (Kp ?
d(q̂∗B/D(q̂sB/D − 1̂s))

dt
)s−∆MB ? âB

g−∆MB ? âB

J2 −∆f̂
B

d )

−(ŝ×
3µr̂B

B/I

‖r̂B
B/I‖5

)s ◦ (∆MB ? (r̂B

B/I)
s)−ŝs ◦ (Kd ? ŝ

s) + v(∆MB)TK−1
i

d

dt
v(∆MB)

+∆f̂B

d ◦ (K−1
j ?

d

dt
∆f̂B

d ).

(33)

Therefore, if d
dtv(∆MB) is defined as in Eq. (25) and d

dt∆f̂
B

d is defined as in Eq. (26), it follows that

V̇= − (q̂∗B/D(q̂sB/D − 1̂s)) ◦ (Kp ? (q̂∗B/D(q̂sB/D − 1̂s)))−ŝs ◦ (Kd ? ŝ
s) ≤ 0, for all (q̂B/D, ŝ, v(∆MB), ∆f̂B

d ) ∈
Hud × Hvd × R7 × Hvd\{1̂, 0̂, 07×1, 0̂}. Hence, the equilibrium point (q̂B/D, ŝ, v(∆MB), ∆f̂B

d ) = (+1̂, 0̂, 07×1, 0̂)

is uniformly stable and uniformly bounded, i.e., q̂B/D, ŝ, v(∆MB), ∆f̂B

d ∈ L∞. Moreover, from Eqs.

(22) and (28), this also means that ω̂B
B/D, v(M̂B),

̂̂
fB

d ∈ L∞. Since V ≥ 0 and V̇ ≤ 0, limt→∞ V (t)

exists and is finite. Hence, limt→∞
∫ t

0
V̇ (τ) dτ = limt→∞ V (t) − V (0) also exists and is finite. Since

q̂B/D, ŝ, v(∆MB), ∆f̂B

d , ω̂
B
B/D, v(M̂B),

̂̂
fB

d ,
˙̂ωD
D/I, ω̂

B
D/I, q̂D/I ∈ L∞ and r̂B

B/I 6= 0̂, then from Eqs. (16), (21), and

(17) and from Lemma 1, r̂B
B/I,

˙̂qB/D, f̂
B, ˙̂ωB

B/D,
˙̂s ∈ L∞. Hence, by Barbalat’s lemma, vec

(
q̂∗B/D(q̂sB/D − 1̂s)

)
→ 0̂

and ŝ → 0̂ as t → ∞. In Ref. 16, it is shown that vec
(
q̂∗B/D(q̂sB/D − 1̂s)

)
→ 0̂ is equivalent to q̂B/D → ±1̂.

Finally, calculating the limit as t→∞ of both sides of Eq. (22) yields ω̂B
B/D → 0̂.

The following remarks are in order.

Remark 1. Theorem 1 states that q̂B/D converges to either +1̂ or −1̂. Note that q̂B/D = +1̂ and q̂B/D = −1̂
represent the same physical relative position and attitude between frames, so either equilibrium is acceptable.
However, this can lead to the so-called unwinding phenomenon where a large rotation (greater than 180
degrees) is performed, despite the fact that a smaller rotation to the equilibrium (less than 180 degrees)
exits. This problem of quaternions is well documented and possible solutions exist in literature.1,5, 12,35

Remark 2. The terms M̂B ? âB
g ,

3µr̂BB/I

‖r̂B
B/I
‖5 × (M̂B ? (r̂B

B/I)
s), M̂B ? âB

J2
, and

̂̂
fB

d of the control law given by

Eq. (21) are estimates of the gravitational force, gravity-gradient torque, perturbing force due to Earth’s
oblateness, and dual disturbance force calculated using the estimated mass and inertia matrix. These terms
can be thought of as an approximate cancelation of these forces and torques. The remaining terms of the
control law are a result of the rigid body dynamic equations of motion.8 As shown in Ref. 16, the term
vec
(
q̂∗B/D(q̂sB/D − 1̂s)

)
is equal to 1

2r
B
B/D + εvec

(
qB/D

)
and, hence, is the feedback of the relative position error

and of the vector part of the relative attitude error. The term Kd ? ŝ
s can be thought of as a damping term,

where ŝ takes the place of ω̂B
B/D. The terms ω̂B

B/I×(M̂B ? (ω̂B
B/I)

s), M̂B?(q̂∗B/D
˙̂ωD
D/Iq̂B/D)s, and M̂B ? (ω̂B

D/I×ω̂B
B/D)s

are a direct cancelation of identical terms in Eq. (17) with the true mass and inertia matrix replaced by

their estimates. Finally the term M̂B ? (Kp ?
d
dt (q̂

∗
B/D(q̂sB/D − 1̂s)))s is a result of using ŝ instead of ω̂B

B/D in
the damping term and, ultimately, guarantees that the pose error will converge to zero even if the reference
motion is not sufficiently exciting, unlike in Ref. 6.

Remark 3. Apart from the terms due to the gravity field, the dual part of the control law given by Eq.
(21) is

τB=−vec
(
qB/D

)
−Kω ∗ ωB

B/D−(KωKq) ∗ qB/D+ωB

B/I × (ÎB ∗ ωB

B/I)+Î
B ∗ (q∗B/Dω̇

D

D/IqB/D)

+ÎB ∗ (ωB

D/I × ωB

B/D)−(ÎBKq) ∗
d

dt
(qB/D),

(34)

where ÎB is an estimate of the inertia matrix of the rigid body. This law is identical to the adaptive
attitude(-only) tracking law proposed in Ref. 26.
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Remark 4. It can be easily shown that the model-dependent version of the control law given by Eq. (21),
where the estimates of the dual inertia matrix and dual disturbance force are replaced by its true values, i.e.,

f̂B

c =−MB?âB

g−
3µr̂B

B/I

‖r̂B
B/I‖5

×(MB?(r̂B

B/I)
s)−MB?âB

J2−f̂
B

d−vec
(
q̂∗B/D(q̂sB/D−1̂s)

)
−Kd?ŝ

s (35)

+ω̂B

B/I×(MB?(ω̂B

B/I)
s)+MB?(q̂∗B/D

˙̂ωD

D/Iq̂B/D)s+MB?(ω̂B

D/I×ω̂B

B/D)s−MB ? (Kp?
d

dt
(q̂∗B/D(q̂sB/D−1̂s)))s,

still guarantees that, for all initial conditions, limt→∞ q̂B/D = ±1̂ and limt→∞ ω̂B
B/D = 0̂.

Sufficient Conditions for Mass and Inertia Matrix Iden-

tification

In this section, sufficient conditions on the reference pose (i.e., the reference position and attitude) are
given that guarantee that the estimate of the dual inertia matrix will converge to the true dual inertia
matrix. Note however that the result presented in Theorem 1 does not depend on the convergence of this
estimate. In other words, the controller proposed in Theorem 1 guarantees almost global asymptotical
stability of the linear and angular position and velocity tracking errors even without estimate convergence.
Nevertheless, identification of the mass and inertia matrix of the satellite might be important, for example,
for fuel consumption estimation, for calculation of re-entry trajectories and terminal velocities, for state
estimation, for fault-detecting-and-isolation systems, and for docking/undocking scenarios.

Proposition 1. Let the dual disturbance force be exactly known or estimated so that
̂̂
fB

d can be replaced by f̂B

d

in Eq. (21). Moreover, assume that q̂D/I, ω̂
D
D/I,

˙̂ωD
D/I,

¨̂ωD
D/I ∈ L∞, r̂B

B/I 6= 0̂, and q̂D/I is periodic. Furthermore,
let W : [0,∞)→ R8×7 be defined as

W(t)v(∆MB) = ω̂D

D/I(t)× (∆MB ? (ω̂D

D/I(t))
s) +∆MB ? ( ˙̂ωD

D/I(t))
s −∆MB ? âD

g

−
3µr̂D

D/I

‖r̂D
D/I‖5

× (∆MB ? (r̂D

D/I)
s)−∆MB ? âD

J2

(36)

or, equivalently, W(t) = Wrb(t) + Wg(t) + W∇g(t) + WJ2(t), where

Wrb(t) =



0 0 0 0 0 0 u̇+ qw − rv
0 0 0 0 0 0 v̇ − pw + ru

0 0 0 0 0 0 ẇ + pv − qu
0 0 0 0 0 0 0

ṗ q̇ − pr ṙ + pq −qr q2 − r2 qr 0

pr ṗ+ qr −p2 + r2 q̇ ṙ − pq −pr 0

−pq p2 − q2 ṗ− qr pq q̇ + pr ṙ 0

0 0 0 0 0 0 0


, (37)

Wg(t) =



0 0 0 0 0 0 µx
‖r̄D

D/I
‖3

0 0 0 0 0 0 µy
‖r̄D

D/I
‖3

0 0 0 0 0 0 µz
‖r̄D

D/I
‖3

0 0 0 0 0 0 0

0 0 0 0 0 0 0

0 0 0 0 0 0 0

0 0 0 0 0 0 0

0 0 0 0 0 0 0


, WJ2(t) =



0 0 0 0 0 0 a1

0 0 0 0 0 0 a2

0 0 0 0 0 0 a3

0 0 0 0 0 0 0

0 0 0 0 0 0 0

0 0 0 0 0 0 0

0 0 0 0 0 0 0

0 0 0 0 0 0 0


, (38)
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W∇g(t) =



0 0 0 0 0 0 0

0 0 0 0 0 0 0

0 0 0 0 0 0 0

0 0 0 0 0 0 0

0 3µxz
‖r̄D

D/I
‖5 − 3µxy

‖r̄D
D/I
‖5

3µyz
‖r̄D

D/I
‖5 − 3µ(y2−z2)

‖r̄D
D/I
‖5 − 3µyz

‖r̄D
D/I
‖5 0

− 3µxz
‖r̄D

D/I
‖5 − 3µyz

‖r̄D
D/I
‖5 − 3µ(z2−x2)

‖r̄D
D/I
‖5 0 3µxy

‖r̄D
D/I
‖5

3µxz
‖r̄D

D/I
‖5 0

3µxy
‖r̄D

D/I
‖5 − 3µ(x2−y2)

‖r̄D
D/I
‖5

3µyz
‖r̄D

D/I
‖5 − 3µxy

‖r̄D
D/I
‖5 − 3µxz

‖r̄D
D/I
‖5 0 0

0 0 0 0 0 0 0


, (39)

where v̄D
D/I = [u v w]T, ω̄D

D/I = [p q r]T, r̄D
D/I = [x y z]T, and āD

J2
= [a1 a2 a3]T. Let also 0 ≤ t1 ≤ t2 ≤ ... ≤ tn

be such that

rank


W(t1)

...

W(tn)

 = 7. (40)

Then, under the control law given by Eq. (21), limt→∞ M̂B = MB.

Proof. The proof starts by proving that limt→∞ ˙̂ωB
B/D = 0̂. (Note that limt→∞ ω̂B

B/D = 0̂ does not, in general,

imply that limt→∞ ˙̂ωB
B/D = 0̂.) Note that limt→∞

∫ t
0

˙̂ωB
B/D(τ) dτ = limt→∞ ω̂B

B/D(t) − ω̂B
B/D(0) = −ω̂B

B/D(0)

exits and is finite. Furthermore, since q̂D/I, ω̂
D
D/I,

˙̂ωD
D/I,

¨̂ωD
D/I,

˙̂qB/D, ¨̂qB/D, ˙̂ωB
B/D, dv(M̂B)

dt ,
df̂B

d

dt ∈ L∞ and r̂B
B/I 6= 0̂,

it follows that ¨̂ωB
B/D ∈ L∞ by differentiating Eq. (17). Hence, by Barbalat’s lemma, limt→∞ ˙̂ωB

B/D = 0̂. Now,
calculate the limit as t → ∞ of both sides of Eq. (17). Next, substitute the dual control force by Eq. (21)

and replace
̂̂
fB

d by f̂B

d in Eq. (21) (note that f̂B

d is assumed to be known). Finally, using the fact that,
according to Theorem 1, limt→∞ ω̂B

B/D = 0̂ and limt→∞ q̂B/D = ±1̂ (in other words, in the limit the body
frame and the desired frame have the same origin and orientation) yields:

lim
t→∞

(ω̂D

D/I×(∆MB?(ω̂D

D/I)
s)+∆MB?( ˙̂ωD

D/I)
s−∆MB?âD

g −
3µr̂D

D/I

‖r̂D
D/I‖5

×(∆MB?(r̂D

D/I)
s)−∆MB ? âD

J2)=0̂. (41)

Moreover, note that if q̂D/I is periodic with period T , so are ˙̂qD/I, ω̂
D
D/I,

˙̂ωD
D/I, r̂

D
D/I, â

D
g , âD

J2
, and W(t). Finally,

noting that limt→∞
d
dtv(M̂B) = 07×1 from Eq. (25) and Theorem 1, under the conditions of Proposition 1,

Eq. (41) implies that limt→∞ v(∆MB) = 07×1 or, equivalently, limt→∞ M̂B = MB.

Remark 5. In practice, the true dual disturbance force f̂B

d is never known. Moreover, there is no guarantee
that the estimate of the dual disturbance force will converge to its true value. Hence, in practice, the estimate
of the mass and inertia matrix of the spacecraft will only be as good as the estimate of the dual disturbance
force.

Remark 6. An alternative, and more general, sufficient condition than Eq. (40) for dual inertia matrix

identification, which does not require q̂D/I to be periodic, is that the 7 × 7 matrix
∫ t+T2

t
W

T

(t)W(t) dt is
positive definite for all t ≥ T1 for some T1 ≥ 0 and T2 > 0.36,37

Simulation Results

In this section, two examples are considered. In the first example, the controller proposed in this
paper is applied to a conceivable satellite proximity operations scenario, where a chaser satellite approaches,
circumnavigates, and docks with a target satellite. In the second example, the mass and inertia matrix of a
satellite are identified using the controller.

Satellite Proximity Operations

In this example, the versatility of the controller is demonstrated by using it, in sequence, to approach,
circumnavigate, and dock with a target satellite, while always pointing at it.
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Four reference frames are defined: the inertial frame, the target frame, the desired frame, and the body
frame. The inertial frame is the Earth-Centered-Inertial (ECI) frame. The body frame is some frame fixed
to the chaser satellite and centered at its center of mass. The target frame and the desired frame are defined
as

ĪT =
r̄T/I

‖r̄T/I‖
, J̄T = K̄T × ĪT, K̄T =

ω̄T/I

‖ω̄T/I‖
and

ĪD =
r̄D/T

‖r̄D/T‖
, J̄D = K̄D × ĪD, K̄D ‖ K̄T,

respectively, where ω̄T/I =
r̄T/I×v̄T/I

‖r̄T/I‖2
is calculated from the orbital angular momentum of the target spacecraft

with respect to the inertial frame given by h̄T/I = m‖r̄T/I‖2ω̄T/I = r̄T/I×mv̄T/I. The target satellite is assumed
to be fixed to the target frame. The objective of the control law is to superimpose the body frame to the
desired frame. The relationship between the different frames is illustrated in Figure 2.

I
I

I
J

I
KT/I

r

B
I

B
J

B
K

D
O

I
O

B
O

D D/T
I r

D D D
J K I 

D D/T
K 

B/D
r

T
O

T T/I
I r

T T T
J K I 

T T/I
K 

D/T
r

Figure 2. Reference frames.

The target spacecraft is assumed to be in a highly eccentric Molniya orbit with orbital elements given
in Table 1 and nadir pointing. The relative motion of the desired frame with respect to the target frame is
divided into the following three phases.

Table 1. Orbital elements of target satellite.

Molniya orbit GEO

Perigee altitude (km) 813.2 35786

Eccentricity (-) 0.7 0

Inclination (deg) 63.4 0

Argument of perigee (deg) 270 0

RAAN (deg) 329.6 0

True anomaly (deg) 180 0

- Phase #1: Straight line approach along J̄T from −30 m to −20 m at a constant speed of 0.025 m/s.
In other words, during this phase, ω̄T

D/T = [0, 0, 0]T rad/s and v̄T
D/T = [0, 0.025, 0]T m/s, with initial

condition r̄T
D/T = [0, − 30, 0]T m.

- Phase #2: Circular circumnavigation around the target satellite with a radius of 20 m in the J̄T-
K̄T plane (so that chaser satellite does not cross the nadir direction of the target satellite) and with
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constant angular speed equal to the mean motion of the target satellite. In other words, during this
phase, ω̄T

D/T = [−n, 0, 0]T rad/s, v̄T
D/T = [0, − aen sin(nt), ben cos(nt)]T m/s, and ae = be = 20 m,

where n =
√
µ/a3 is the mean motion of the target satellite (assuming no perturbation due to Earth’s

oblateness) and a is the semi-major axis of the target satellite (assuming no perturbation due to Earth’s
oblateness).

- Phase #3: Straight-line docking along J̄T from -20 m to contact at a constant speed of 0.025 m/s. In
other words, during this phase, ω̄T

D/T = [0, 0, 0]T rad/s and v̄T
D/T = [0, 0.025, 0]T m/s.

The linear velocity of the target satellite with respect to the inertial frame is calculated by numerically
integrating the gravitational acceleration and also the perturbing acceleration due to Earth’s oblateness
acting on the target satellite. On the other hand, the angular acceleration of the target satellite with respect
to the inertial frame is calculated analytically through

αI

T/I = ω̇I

T/I =
(rI

T/I × aI
T/I)‖rI

T/I‖2 − (rI
T/I × vI

T/I)2(rI
T/I · vI

T/I)

‖rI
T/I‖4

. (42)

Note that the perturbation due to Earth’s oblateness changes the direction of the target’s angular velocity
with respect to the inertial frame. However, this change is relatively small in this scenario due to the critical
inclination of the Molniya orbit. The rotational and translational kinematic equations of the target frame
with respect to the inertial frame and of the desired frame with respect to the target frame are written in
terms of dual quaternions as in Eq. (14) and Eq. (16), respectively.

The control law given by Eq. (21) is a function of ω̂D
D/I and ˙̂ωD

D/I. These variables are calculated in terms
of dual quaternions as follows:

ω̂D

D/I = ω̂D

T/I + ω̂D

D/T = q̂∗D/Iω̂
I

T/Iq̂D/I + q̂∗D/Tω̂
T

D/Tq̂D/T, (43)

˙̂ωD

D/I = q̂∗D/Iα̂
I

T/Iq̂D/I − ω̂D

D/I × ω̂D

T/I + q̂∗D/Tα̂
T

D/Tq̂D/T, (44)

where α̂T
D/T = ˙̂ωT

D/T = αT
D/T + ε(aT

D/T − αT
D/T × rT

D/T − ωT
D/T × vT

D/T) and α̂I
T/I = ˙̂ωI

T/I = αI
T/I + ε(aI

T/I −
αI

T/I × rI
T/I − ωI

T/I × vI
T/I). Eq. (44) is calculated by differentiating Eq. (43) and using the dual quaternion

counterpart of the classical transport theorem.17 Note that instead of calculating ω̂D
D/I and ˙̂ωD

D/I in terms of
dual quaternions, one could instead calculate ωD

D/I, ω̇
D
D/I, v

D
D/I, and v̇D

D/I using the traditional equations for
a point moving with respect to a rotating rigid body. However, this would require the calculation of four
parameters instead of just two and significant more work to calculate vD

D/I and v̇D
D/I, whose expressions are

coupled with the rotational motion. Thus, Eqs. (43) and (44) are another good example of the benefits in
terms of compactness and simplicity of using dual quaternions.

The inertia matrix and mass of the chaser satellite are assumed to be1

ĪB =

22 0.2 0.5

0.2 20 0.4

0.5 0.4 23

 kg m2

and m = 100 kg, respectively. The constant disturbance force and torque acting on the chaser satellite
are set to f̄B

d = [0.005, 0.005, 0.005]T N and τ̄B

d = [0.005, 0.005, 0.005]T N m, respectively. The origin
of the body frame (coincident with the center of mass of the chaser satellite) is positioned relatively to
the origin of the desired frame at r̄B

B/D=[2, 2, 2]T m. The initial error quaternion, relative linear veloc-
ity, and relative angular velocity of the body frame with respect to the desired frame are set to qB/D =
[qB/D1 qB/D2 qB/D3 qB/D4]T = [0.4618, 0.1917, 0.7999, 0.3320]T, v̄B

B/D = [uB
B/D v

B
B/D w

B
B/D]T = [0.1, 0.1, 0.1]T

m/s, and ω̄B
B/D = [pB

B/D q
B
B/D r

B
B/D]T = [0.1, 0.1, 0.1]T rad/s, respectively.

The initial estimates for the mass, inertia matrix, and dual disturbance force are set to zero, whereas the
control gains are chosen to be K̄r = 0.05I3, K̄q = 0.25I3, K̄v = 15I3, K̄w = 15I3, Ki = diag([KI11 , KI12 , KI13 , KI22 , KI23 , KI33 , Km]),
KI11 ,KI12 ,KI13 ,KI22 ,KI23 = 100, Km = 1, K̄f = 0.8I3, and K̄τ = 0.8I3.

Figure 3 shows the linear and angular velocity of the desired frame with respect to the inertial frame
expressed in the desired frame for the complete maneuver. These signals form the reference for the controller.

Figure 4 shows the initial transient response and the transient response between phases #1 and #2 of the
position and attitude of the body frame with respect to the desired frame using the controller given by Eq.

14
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Figure 3. Reference motion.

(21) (adaptive) and the controller given by Eq. (35) (nonadaptive). Note that the transition between phases
#1 and #2 occurs at 400 s. The transient response between phases #2 and #3 is similar and, thus, not
shown here. Both controllers successfully cancel the relative position and attitude errors at the beginning
of the maneuver and between phases. These latter are due to the fact that ω̄T

D/T and v̄T
D/T are discontinuous

between phases. In other words, between phases ω̂D
D/I /∈ L∞, which instantaneously violates the conditions

of Theorem 1.
Figure 5 shows the relative linear and angular velocity of the body frame with respect to the desired

frame for the same two cases studied in Figure 4. Again, both controllers successfully cancel the relative
linear and angular velocity errors at the beginning of the maneuver and between phases.

Figure 6 shows that although the adaptive controller does not converge to the true mass and inertia matrix
of the chaser satellite for this reference motion, nevertheless, it is still able to track the reference motion.
As a matter of fact, the similarities between the responses obtained with the adaptive controller (which
has no information about the true mass, inertia matrix, and dual disturbance force) and the nonadaptive
controller (which knows the true mass, inertia matrix, and dual disturbance force) are quite remarkable. For
this reference motion, the minimum singular value of the matrix in Eq. (40) for t1 = 0, t2 ≈ 3.5e−2, ...,
t25131 ≈ 3.8e4 s is calculated to be 1.3e−6.

Figure 7 shows that for this reference motion, even though the adaptive controller is unable to exactly
identify the true dual disturbance force, it converges to values of the same order of magnitude. Note that
Theorem 1 only guarantees that these estimates will be uniformly bounded. Relatively small oscillations in
the estimates can be seen between phases as a result of the discontinuities in ω̂D

D/I.

For completeness, Figure 8 shows the control force, f̄B
c =[fB

c1 f
B
c2 f

B
c3]T, and the control torque, τ̄B

c =[τB
c1 τ

B
c2 τ

B
c3]T,

produced by the adaptive and nonadaptive controllers during the initial transient response and between
phases #1 and #2. The relatively high values of control force and torque during the initial transient re-
sponse are required to eliminate the initial relative position, attitude, linear and angular velocity errors that
were arbitrarily set between the body frame and the desired frame.
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Figure 4. Relative attitude and position expressed in the body frame.

Mass and Inertia Matrix Identification

In this example, the adaptive control law is used to identify the mass and inertia matrix of a satellite in a
Geosynchronous Earth Orbit (GEO) with orbital elements given in Table 1.

In this scenario, the target frame is the unperturbed Hill frame3 of the satellite. Note that in this case
there is not a physical spacecraft attached to the target frame. The desired frame is defined to have the
same position and orientation as the target frame at the beginning of the simulation. The inertial frame and
the body frame are defined as in the previous example.

The satellite has the same mass and inertia matrix as the chaser satellite in the previous example. As
assumed in Proposition 1, the dual disturbance force is assumed to be known and, in this example, equal to
zero. The body frame is assumed to have the same position, attitude, linear velocity, and angular velocity as
the desired frame at the beginning of the simulation. The initial estimates for the mass and inertia matrix
are set to zero. With the exception of Km = 100, the control gains are the same as in the previous example.

The relative motion of the desired frame with respect to the target frame is defined in Figure 9. It is
composed by a pure translation and several pure rotations designed to identify the mass and the elements of
the inertia matrix in sequence, while keeping the control forces and torques within reasonable values. This
reference motion was created by taking into consideration the matrix W(t) and the results presented in Ref.
[26]. For this reference motion, the minimum singular value of the matrix in Eq. (40) for t1 = 0, t2 ≈ 1.0e−5,
..., t14014 = 900 s is calculated to be 1.15.

The mass and inertia matrix identification is shown in Figure 10. Note that the mass and inertia matrix
are identified even though their initial estimates are zero. They are identified in sequence: m is identified
during the first triangle waveform (on vD

D/T), I12, I22, and I23 are identified during the second triangle
waveform (on qD

D/T), I11 and I13 are identified during the third triangle waveform (on pD
D/T), and I33 is

identified during the fourth and last triangle waveform (on rD
D/T). The associated control forces and torques

are shown in Figure 11.
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Figure 5. Relative linear and angular velocity expressed in the body frame.

Conclusion

An adaptive tracking controller for satellite proximity operations is presented in this paper. The controller
requires no information about the mass and inertia matrix of the chaser satellite and takes into account the
gravitational acceleration, the perturbing acceleration due to Earth’s oblateness, and the gravity gradient
torque. The controller is shown to ensure almost global asymptotical stability of the linear and angular
position and velocity tracking errors, even in the presence of constant unknown disturbance forces and
torques. Hence, the controller can handle large error angles and displacements. Sufficient conditions for
mass and inertia matrix identification are also given. Since this controller is based on the relative nonlinear
equations of motion, it can be used to asymptotically track time-varying relative position and attitude profiles
with respect to, for example, tumbling target satellites in elliptical orbits or small asteroids. Moreover, since
the controller requires no information about the mass and inertia matrix of the chaser satellite, it can be
used when little or no information about the mass and/or inertia matrix of the chaser satellite is available.
The relatively low order of the controller makes it suitable for satellites with limited on-board computational
resources. One of the key contributions of this paper is that it demonstrates how dual quaternions can be
used to extend existing attitude-only controllers based on quaternions having certain desirable properties
(e.g., stability, adaptivity, boundedness) to position and attitude controllers having similar properties.

Acknowledgments

This work was supported by the International Fulbright Science and Technology Award sponsored by
the Bureau of Educational and Cultural Affairs (ECA) of the U.S. Department of State and AFRL research
award FA9453-13-C-0201.

17



0 500
-10

0

10

20

30

Time (s)
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Figure 9. Reference motion for identification.
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Î 1
1
(k

g
m

2
)

0 500 1000
-0.5

0

0.5

1

Time (s)
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Figure 10. Mass and inertia matrix identification.
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Figure 11. Control force and torque during identification.
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