Title:
A Game-theoretic Formulation of the Homogeneous Self-Reconfiguration Problem

Thumbnail Image
Author(s)
Pickem, Daniel
Egerstedt, Magnus B.
Shamma, Jeff
Authors
Advisor(s)
Advisor(s)
Editor(s)
Associated Organization(s)
Series
Supplementary to
Abstract
In this paper we formulate the homogeneous two- and three-dimensional self-reconfiguration problem over discrete grids as a constrained potential game. We develop a game-theoretic learning algorithm based on the Metropolis-Hastings algorithm that solves the self-reconfiguration problem in a globally optimal fashion. Both a centralized and a fully decentralized algorithm are presented and we show that the only stochastically stable state is the potential function maximizer, i.e. the desired target configuration. These algorithms compute transition probabilities in such a way that even though each agent acts in a self-interested way, the overall collective goal of self-reconfiguration is achieved. Simulation results confirm the feasibility of our approach and show convergence to desired target configurations.
Sponsor
Date Issued
2015-12
Extent
Resource Type
Text
Resource Subtype
Proceedings
Rights Statement
Rights URI