Parallel Shortest Path Algorithms for Solving Large-Scale Instances

Thumbnail Image
Madduri, Kamesh
Bader, David A.
Berry, Jonathan W.
Crobak, Joseph R.
Associated Organizations
Supplementary to
We present an experimental study of parallel algorithms for solving the single source shortest path problem with non-negative edge weights (NSSP) on large-scale graphs. We implement Meyer and Sander's Δ-stepping algorithm and report performance results on the Cray MTA-2, a multithreaded parallel architecture. The MTA-2 is a high-end shared memory system offering two unique features that aid the efficient implementation of irregular parallel graph algorithms: the ability to exploit fine-grained parallelism, and low-overhead synchronization primitives. Our implementation exhibits remarkable parallel speedup when compared with a competitive sequential algorithm, for low-diameter sparse graphs. For instance, Δ-stepping on a directed scale-free graph of 100 million vertices and 1 billion edges takes less than ten seconds on 40 processors of the MTA-2, with a relative speedup of close to 30. To our knowledge, these are the first performance results of a parallel NSSP problem on realistic graph instances in the order of billions of vertices and edges.
Date Issued
Resource Type
Resource Subtype
Technical Report
Rights Statement
Rights URI