Person:
Lim, Sung Kyu

Associated Organization(s)
ORCID
ArchiveSpace Name Record

Publication Search Results

Now showing 1 - 3 of 3
  • Item
    A Floorplan-Aware Dynamic Inductive Noise Controller for Reliable 2D and 3D Microprocessors
    (Georgia Institute of Technology, 2006) Mohamood, Fayez ; Healy, Michael ; Lim, Sung Kyu ; Lee, Hsien-Hsin Sean
    Power delivery is a growing reliability concern in microprocessors as the industry moves toward feature-rich, power-hungrier designs. To battle the ever-aggravating power consumption, modern microprocessor designers or researchers propose and apply aggressive power-saving techniques in the form of clock-gating and/or power-gating in order to operate the processor within a given power envelope. However, these techniques often lead to high-frequency current variations, which can stress the power delivery system and jeopardize reliability due to inductive noise (L di/dt) in the power supply network. In addition, with the advent of 3D stacked IC technology that facilitates the design of processors with much higher module density, the design of a low impedance power-delivery network can be a daunting challenge. To counteract these issues, modern microprocessors are designed to operate under the worst-case current assumption by deploying adequate decoupling capacitance. With the lowering of supply voltages and increased leakage power and current consumption, designing a processor for the worst case is becoming less appealing. In this paper, we propose a new dynamic inductive-noise controlling mechanism at the microarchitectural level that will limit the on-die current demand within predefined bounds, regardless of the native power and current characteristics of running applications. By dynamically monitoring the access patterns of microarchitectural modules, our mechanism can effectively limit simultaneous switching activity of close-by modules, thereby leveling voltage ringing at local power-pins. Compared to prior art, our di/dt controller is the first that takes the processor's floorplan as well as its power-pin distribution into account to provide a finer-grained control with minimal performance degradation. Based on the evaluation results using 2D and 3D floorplans, we show that our techniques can significantly improve inductive noise induced by current demand variation and reduce the average current variability by up to 7 times with an average performance overhead of 4.0% (2D floorplan) and 3.8% (3D floorplan).
  • Item
    Thermal-aware 3D Microarchitectural Floorplanning
    (Georgia Institute of Technology, 2004) Ekpanyapong, Mongkol ; Healy, Michael ; Ballapuram, Chinnakrishnan S. ; Lim, Sung Kyu ; Lee, Hsien-Hsin Sean ; Loh, Gabriel H.
    Next generation deep submicron processor design will need to take into consideration many performance limiting factors. Flip flops are inserted in order to prevent global wire delay from becoming nonlinear, enabling deeper pipelines and higher clock frequency. The move to 3D ICs will also likely be used to further shorten wirelength. This will cause thermal issues to become a major bottleneck to performance improvement. In this paper we propose a floorplanning algorithm which takes into consideration both thermal issues and profile weighted wirelength using mathematical programming. Our profile-driven objective improves performance by 20% over wirelength-driven. While the thermal-driven objective improves temperature by 24% on average over the profile-driven case.
  • Item
    Profile-Guided Microarchitectural Floorplanning for Deep Submicron Processor Design
    (Georgia Institute of Technology, 2003) Ekpanyapong, Mongkol ; Minz, Jacob Rajkumar ; Watewai, Thaisiri ; Lee, Hsien-Hsin Sean ; Lim, Sung Kyu
    As process technology migrates to deep submicron with feature size less than 100nm, global wire delay is becoming a major hindrance in keeping the latency of intra-chip communication within a single cycle, thus decaying the performance scalability substantially. An effective floorplanning algorithm can no longer ignore the information of dynamic communication patterns of applications. In this paper, using the profile information acquired at the architecture/microarchitecture level, we propose a "profile-guided microarchitectural floorplanner" that considers both the impact of wire delay and the architectural behavior, namely the inter-module communication, to reduce the latency of frequent routes inside a processor and to maintain performance scalability. Based on our simulation results, the profile-guided method shows a 5% to 40% IPC improvement when clock frequency is fixed. From the perspective of instruction throughput (in BIPS), our floorplanner is much more scalable than a conventional wire length based floorplanner.