Person:
Mooney, Vincent John, III

Associated Organization(s)
ORCID
ArchiveSpace Name Record

Publication Search Results

Now showing 1 - 2 of 2
  • Item
    Lattice-Based Encryption Schemes and its Applications to Homomorphic Encryption
    (Georgia Institute of Technology, 2020-12) Bin Ahmad Shahrir, Ahmad Faris Durrani ; Pan, Leyan ; Hutto, Kevin ; Mooney, Vincent John, III
    Homomorphic encryption is a type of encryption that allows performing operations on the ciphertext without having access to the plaintext. While the algorithm is still not efficient enough for practical applications, homomorphic encryption has potential in many areas such as voting, storage of sensitive personal information, and analyzing demo-graphical data. In 2009, Gentry proposed the first plausible algorithm for fully homomorphic encryption, and various improvements have been built upon this result, significantly increasing the efficiency of homomorphic encryption. In Gentry’s original implementation, lattice-based cryptography is used as a basis of the Homomorphic encryption scheme. Lattice-based cryptography still lies at the heart of many fully homomorphic encryption schemes. In this report, we build on previous VIP works and illustrate various lattice-based encryption schemes, and briefly describe how Gentry used lattice-based cryptography to construct the first fully homomorphic encryption scheme. In addition, this sub-team hopes the incoming VIP sub-teams would make use of this report and expand upon our research into homomorphic encryption.
  • Item
    Task Scheduling for Control Oriented Requirements for Cyber-Physical Systems
    (Georgia Institute of Technology, 2008-12) Zhang, Fumin ; Szwaykowska, Klementyna ; Wolf, Wayne ; Mooney, Vincent John, III
    The wide applications of cyber-physical systems (CPS) call for effective design strategies that optimize the performance of both computing units and physical plants. We study the task scheduling problem for a class of CPS whose behaviors are regulated by feedback control laws. We codesign the control law and the task scheduling algorithm for predictable performance and power consumption for both the computing and the physical systems. We use a typical example, multiple inverted pendulums controlled by one processor, to illustrate our method.