Organizational Unit:
Institute for Robotics and Intelligent Machines (IRIM)

Research Organization Registry ID
Description
Previous Names
Parent Organization
Parent Organization
Includes Organization(s)
Organizational Unit
ArchiveSpace Name Record

Publication Search Results

Now showing 1 - 10 of 15
  • Item
    Exploring lift-off dynamics in a jumping robot
    (Georgia Institute of Technology, 2012-11-14) Aguilar, Jeffrey Jose
    We study vertical jumping in a simple robot comprising an actuated mass spring arrangement. The actuator frequency and phase are systematically varied to find optimal performance. Optimal jumps occur above and below (but not at) the robot's resonant frequency f0. Two distinct jumping modes emerge: a simple jump which is optimal above f0 is achievable with a squat maneuver, and a peculiar stutter jump which is optimal below f0 is generated with a countermovement. A simple dynamical model reveals how optimal lift-off results from non-resonant transient dynamics.
  • Item
    Vulnerabilities in SNMPv3
    (Georgia Institute of Technology, 2012-07-10) Lawrence, Nigel Rhea
    Network monitoring is a necessity for both reducing downtime and ensuring rapid response in the case of software or hardware failure. Unfortunately, one of the most widely used protocols for monitoring networks, the Simple Network Management Protocol (SNMPv3), does not offer an acceptable level of confidentiality or integrity for these services. In this paper, we demonstrate two attacks against the most current and secure version of the protocol with authentication and encryption enabled. In particular, we demonstrate that under reasonable conditions, we can read encrypted requests and forge messages between the network monitor and the hosts it observes. Such attacks are made possible by an insecure discovery mechanism, which allows an adversary capable of compromising a single network host to set the keys used by the security functions. Our attacks show that SNMPv3 places too much trust on the underlying network, and that this misplaced trust introduces vulnerabilities that can be exploited.
  • Item
    Multi-robot platooning in hostile environments
    (Georgia Institute of Technology, 2012-04-09) Shively, Jeremy
    The purpose of this thesis is to develop a testing environment for mobile robot experiments, to examine methods for multi-robot platooning through hostile environments, and test these algorithms on mobile robots. Such a system will allow us to rapidly address and test problems that arise concerning robot swarms and consequent interactions. In order to create this hardware simulation environment a test bed will be created using ROS or Robot Operating System. This platform is highly modular and extensible for future development. Trajectory generation for the robots will use smoothing splines, B-splines, and A* search. Each method has distinct properties which will be analyzed and rated with respect to its effectiveness with regards to robotic platooning. A few issues to be considered include: Is the optimal path taken with respect to distance and threats? Is the formation of the robots maintained or compromised during traversal of the path? And finally, what sorts of compromises or additions are needed to make each method effective? This work will be helpful for choosing route planning methods in future work and will provide a large code base for rapid prototyping.
  • Item
    Generation and use of a discrete robotic controls alphabet for high-level tasks
    (Georgia Institute of Technology, 2012-04-06) Gargas , Eugene Frank, III
    The objective of this thesis is to generate a discrete alphabet of low-level robotic controllers rich enough to mimic the actions of high-level users using the robot for a specific task. This alphabet will be built through the analysis of various user data sets in a modified version of the motion description language, MDLe. It can then be used to mimic the actions of a future user attempting to perform the task by calling scaled versions of the controls in the alphabet, potentially reducing the amount of data required to be transmitted to the robot, with minimal error. In this thesis, theory is developed that will allow the construction of such an alphabet, as well as its use to mimic new actions. A MATLAB algorithm is then built to implement the theory. This is followed by an experiment in which various users drive a Khepera robot through different courses with a joystick. The thesis concludes by presenting results which suggest that a relatively small group of users can generate an alphabet capable of mimicking the actions of other users, while drastically reducing bandwidth.
  • Item
    Pneumatically-powered robotic exoskeleton to exercise specific lower extremity muscle groups in humans
    (Georgia Institute of Technology, 2012-04-06) Henderson, Gregory Clark
    A control method is proposed for exercising specific muscles of a human's lower body. This is accomplished using an exoskeleton that imposes active force feedback control. The proposed method involves a combined dynamic model of the musculoskeletal system of the lower-body with the dynamics of pneumatic actuators. The exoskeleton is designed to allow for individual control of mono-articular or bi-articular muscles to be exercised while not inhibiting the subject's range of motion. The control method has been implemented in a 1-Degree of Freedom (DOF) exoskeleton that is designed to resist the motion of the human knee by applying actuator forces in opposition to a specified muscle force profile. In this research, there is a discussion on the model of the human's lower body and how muscles are affected as a function of joint positions. Then it is discussed how to calculate for the forces needed by a pneumatic actuator to oppose the muscles to create the desired muscle force profile at a given joint angles. The proposed exoskeleton could be utilized either for rehabilitation purposes, to prevent muscle atrophy and bone loss of astronauts, or for muscle training in general.
  • Item
    3D reconfiguration using graph grammars for modular robotics
    (Georgia Institute of Technology, 2011-12-16) Pickem, Daniel
    The objective of this thesis is to develop a method for the reconfiguration of three-dimensional modular robots. A modular robot is composed of simple individual building blocks or modules. Each of these modules needs to be controlled and actuated individually in order to make the robot perform useful tasks. The presented method allows us to reconfigure arbitrary initial configurations of modules into any pre-specified target configuration by using graph grammar rules that rely on local information only. Local in a sense that each module needs just information from neighboring modules in order to decide its next reconfiguration step. The advantage of this approach is that the modules do not need global knowledge about the whole configuration. We propose a two stage reconfiguration process composed of a centralized planning stage and a decentralized, rule-based reconfiguration stage. In the first stage, paths are planned for each module and then rewritten into a ruleset, also called a graph grammar. Global knowledge about the configuration is available to the planner. In stage two, these rules are applied in a decentralized fashion by each node individually and with local knowledge only. Each module can check the ruleset for applicable rules in parallel. This approach has been implemented in Matlab and currently, we are able to generate rulesets for arbitrary homogeneous input configurations.
  • Item
    Development of a multi-platform simulation for a pneumatically-actuated quadruped robot
    (Georgia Institute of Technology, 2011-11-18) Daepp, Hannes Gorkin
    Successful development of mechatronic systems requires a combination of targeted hardware and software design. The compact rescue robot (CRR), a quadruped pneumatically-actuated walking robot that seeks to use the benefits garnered from pneumatic power, is a prime example of such a system. This thesis discusses the development and testing of a simulation that will aid in further design and development of the CRR by enabling users to examine the impacts of pneumatic actuation on a walking robot. However, development of an entirely new dynamic simulation specific to the system is not practical. Instead, the simulation combines a MATLAB/Simulink actuator simulation with a readily available C++ dynamics library. This multi-platform approach results in additional incurred challenges due to the transfer of data between the platforms. As a result, the system developed here is designed in the fashion that provides the best balance of realistic behavior, model integrity, and practicality. An analytically derived actuator model is developed using classical fluid circuit modeling together with nonlinear area and pressure curves to model the valve and a Stribeck-Tanh model to characterize the effects of friction on the cylinder. The valve model is designed in Simulink and validated on a single degree-of-freedom test rig. This actuator model is then interfaced with SrLib, a dynamics library that computes dynamics of the robot and interactions with the environment, and validated through comparisons with a CRR prototype. Conclusions are focused on the final composition of the simulation, its performance and limitations, and the benefits it offers to the system as a whole.
  • Item
    Musical swarm robot simulation strategies
    (Georgia Institute of Technology, 2011-11-16) Albin, Aaron Thomas
    Swarm robotics for music is a relatively new way to explore algorithmic composition as well as new modes of human robot interaction. This work outlines a strategy for making music with a robotic swarm constrained by acoustic sound, rhythmic music using sequencers, motion causing changes in the music, and finally human and swarm interaction. Two novel simulation programs are created in this thesis: the first is a multi-agent simulation designed to explore suitable parameters for motion to music mappings as well as parameters for real time interaction. The second is a boid-based robotic swarm simulation that adheres to the constraints established, using derived parameters from the multi-agent simulation: orientation, number of neighbors, and speed. In addition, five interaction modes are created that vary along an axis of direct and indirect forms of human control over the swarm motion. The mappings and interaction modes of the swarm robot simulation are evaluated in a user study involving music technology students. The purpose of the study is to determine the legibility of the motion to musical mappings and evaluate user preferences for the mappings and modes of interaction in problem solving and in open-ended contexts. The findings suggest that typical users of a swarm robot system do not necessarily prefer more inherently legible mappings in open-ended contexts. Users prefer direct and intermediate modes of interaction in problem solving scenarios, but favor intermediate modes of interaction in open-ended ones. The results from this study will be used in the design and development of a new swarm robotic system for music that can be used in both contexts.
  • Item
    Multi-robot assignment and formation control
    (Georgia Institute of Technology, 2011-07-08) Macdonald, Edward A.
    Our research focuses on one of the more fundamental issues in multi-agent, mobile robotics: the formation control problem. The idea is to create controllers that cause robots to move into a predefined formation shape. This is a well studied problem for the scenario in which the robots know in advance to which point in the formation they are assigned. In our case, we assume this information is not given in advance, but must be determined dynamically. This thesis presents an algorithm that can be used by a network of mobile robots to simultaneously determine efficient robot assignments and formation pose for rotationally and translationally invariant formations. This allows simultaneous role assignment and formation sysnthesis without the need for additional control laws. The thesis begins by introducing some general concepts regarding multi-agent robotics. Next, previous work and background information specific to the formation control and assignment problems are reviewed. Then the proposed assignment al- gorithm for role assignment and formation control is introduced and its theoretical properties are examined. This is followed by a discussion of simulation results. Lastly, experimental results are presented based on the implementation of the assignment al- gorithm on actual robots.
  • Item
    Navigation among movable obstacles in unknown environments
    (Georgia Institute of Technology, 2011-04-05) Levihn, Martin
    This work presents a new class of algorithms that extend the domain of Navigation Among Movable Obstacles (NAMO) to unknown environments. Efficient real-time algorithms for solving NAMO problems even when no initial environment information is available to the robot are presented and validated. The algorithms yield optimal solutions and are evaluated for real-time performance on a series of simulated domains with more than 70 obstacles. In contrast to previous NAMO algorithms that required a pre-specified environment model, this work considers the realistic domain where the robot is limited by its sensor range. It must navigate to a goal position in an environment of static and movable objects. The robot can move objects if the goal cannot be reached or if moving the object significantly shortens the path. The robot gains information about the world by bringing distant objects into its sensor range. The first practical planner for this exponentially complex domain is presented. The planner reduces the search-space through a collection of techniques, such as upper bound calculations and the maintenance of sorted lists with underestimates. Further, the algorithm is only considering manipulation actions if these actions are creating a new opening in the environment. In the addition to the evaluation of the planner itself is each of this techniques also validated independently.