Organizational Unit:
Institute for Robotics and Intelligent Machines (IRIM)

Research Organization Registry ID
Description
Previous Names
Parent Organization
Parent Organization
Includes Organization(s)
Organizational Unit
ArchiveSpace Name Record

Publication Search Results

Now showing 1 - 10 of 15
  • Item
    A List of Household Objects for Robotic Retrieval Prioritized by People with ALS (Version 092008)
    (Georgia Institute of Technology, 2008-09) Choi, Young Sang ; Deyle, Travis ; Kemp, Charles C.
    This technical report is designed to serve as a citable reference for the original prioritized object list that the Healthcare Robotics Lab at Georgia Tech released on its website in September of 2008. It is also expected to serve as the primary citable reference for the research associated with this list until the publication of a detailed, peer-reviewed paper. The original prioritized list of object classes resulted from a needs assessment involving 8 motor-impaired patients with amyotrophic lateral sclerosis (ALS) and targeted, in-person interviews of 15 motor-impaired ALS patients. All of these participants were drawn from the Emory ALS Center. The prioritized object list consists of 43 object classes ranked by how important the participants considered each class to be for retrieval by an assistive robot. We intend for this list to be used by researchers to inform the design and benchmarking of robotic systems, especially research related to autonomous mobile manipulation.
  • Item
    Automatic Landmark Detection for Topological Mapping Using Bayesian Surprise
    (Georgia Institute of Technology, 2008) Ranganathan, Ananth ; Dellaert, Frank
    Topological maps are graphical representations of the environment consisting of nodes that denote landmarks, and edges that represent the connectivity between the landmarks. Automatic detection of landmarks, usually special places in the environment such as gateways, in a general, sensor-independent manner has proven to be a difficult task. We present a landmark detection scheme based on the notion of “surprise” that addresses these issues. The surprise associated with a measurement is defined as the change in the current model upon updating it using the measurement. We demonstrate that surprise is large when sudden changes in the environment occur, and hence, is a good indicator of landmarks. We evaluate our landmark detector using appearance and laser measurements both qualitatively and quantitatively. Part of this evaluation is performed in the context of a topological mapping algorithm, thus demonstrating the practical applicability of the detector.
  • Item
    Probabilistic Topological Mapping for Mobile Robots using Urn Models
    (Georgia Institute of Technology, 2007) Ranganathan, Ananth ; Dellaert, Frank
    We present an application of Bayesian modeling and inference to topological mapping in robotics. This is a potentially difficult problem due to (a) the combinatorial nature of the state space, and (b) perceptual aliasing by which two different landmarks in the environment can appear similar to the robot's sensors. Hence, this presents a challenging approximate inference problem, complicated by the fact that the form of the prior on topologies is far from obvious. We deal with the latter problem by introducing the use of urn models, which very naturally encode prior assumptions in the domain of topological mapping. Secondly, we advance simulated tempering as the basis of two rapidly mixing approximate inference algorithms, based on Markov chain Monte Carlo (MCMC) and Sequential Importance Sampling (SIS), respectively. These algorithms converge quickly even though the posterior being estimated is highly peaked and multimodal. Experiments on real robots and in simulation demonstrate the efficiency and robustness of our technique.
  • Item
    Visual SLAM with a Multi-Camera Rig
    (Georgia Institute of Technology, 2006) Kaess, Michael ; Dellaert, Frank
    Camera-based simultaneous localization and mapping or visual SLAM has received much attention recently. Typically single cameras, multiple cameras in a stereo setup or omni-directional cameras are used. We propose a different approach, where multiple cameras can be mounted on a robot in an arbitrary configuration. Allowing the cameras to face in different directions yields better constraints than single cameras or stereo setups can provide, simplifying the reconstruction of large-scale environments. And in contrast to omni-directional sensors, the available resolution can be focused on areas of interest depending on the application. We describe a sparse SLAM approach that is suitable for real-time reconstruction from such multi-camera configurations. We have implemented the system and show experimental results in a large-scale environment, using a custom made eight-camera rig.
  • Item
    Learning and Inferring Motion Patterns using Parametric Segmental Switching Linear Dynamic Systems
    (Georgia Institute of Technology, 2006) Oh, Sang Min ; Rehg, James M. ; Balch, Tucker ; Dellaert, Frank
    Switching Linear Dynamic System (SLDS) models are a popular technique for modeling complex nonlinear dynamic systems. An SLDS has significantly more descriptive power than an HMM by using continuous hidden states. However, the use of SLDS models in practical applications is challenging for several reasons. First, exact inference in SLDS models is computationally intractable. Second, the geometric duration model induced in standard SLDSs limits their representational power. Third, standard SLDSs do not provide a systematic way to robustly interpret systematic variations governed by higher order parameters. The contributions in this paper address all three challenges above. First, we present a data-driven MCMC sampling method for SLDSs as a robust and efficient approximate inference method. Second, we present segmental switching linear dynamic systems (S-SLDS), where the geometric distributions are replaced with arbitrary duration models. Third, we extend the standard model with a parametric model that can capture systematic temporal and spatial variations. The resulting parametric SLDS model (P-SLDS) uses EM to robustly interpret parametrized motions by incorporating additional global parameters that underly systematic variations of the overall motion. The overall development of the proposed inference methods and extensions for SLDSs provide a robust framework to interpret complex motions. The framework is applied to the honey bee dance interpretation task in the context of the ongoing BioTracking project at Georgia Institute of Technology. The experimental results suggest that the enhanced models provide an effective framework for a wide range of motion analysis applications.
  • Item
    A Partially Fixed Linearization Approach for Submap-Parametrized Smoothing and Mapping
    (Georgia Institute of Technology, 2005) Kipp, Alexander ; Krauthausen, Peter ; Dellaert, Frank
    We present an extension of a smoothing approach to Simultaneous Localization and Mapping (SLAM). We have previously introduced Square-Root SAM, a Smoothing and Mapping approach to SLAM based on Levenberg-Marquardt (LM) optimization. It iteratively finds the optimal nonlinear least squares solution (ML), where one iteration comprises of a linearization step, a matrix factorization, and a back-substitution step. We introduce a submap parametrization which enables a rigid transformation of parts relative to each other during the optimization process. This parameterization is used in a multifrontal QR factorization approach, in which we partially fix the linearization point for a subset of the unknowns corresponding to sub-maps. This greatly accelerates the optimization of an entire SAM graph yet yields an exact solution.
  • Item
    Square Root SAM: Simultaneous Localization and Mapping via Square Root Information Smoothing
    (Georgia Institute of Technology, 2005) Dellaert, Frank
    Solving the SLAM problem is one way to enable a robot to explore, map, and navigate in a previously unknown environment. We investigate smoothing approaches as a viable alternative to extended Kalman filter-based solutions to the problem. In particular, we look at approaches that factorize either the associated information matrix or the measurement matrix into square root form. Such techniques have several significant advantages over the EKF: they are faster yet exact, they can be used in either batch or incremental mode, are better equipped to deal with non-linear process and measurement models, and yield the entire robot trajectory, at lower cost. In addition, in an indirect but dramatic way, column ordering heuristics automatically exploit the locality inherent in the geographic nature of the SLAM problem. In this paper, we present the theory underlying these methods, an interpretation of factorization in terms of the graphical model associated with the SLAM problem, and simulation results that underscore the potential of these methods for use in practice.
  • Item
    A Variational inference method for Switching Linear Dynamic Systems
    (Georgia Institute of Technology, 2005) Oh, Sang Min ; Ranganathan, Ananth ; Rehg, James M. ; Dellaert, Frank
    This paper aims to present a structured variational inference algorithm for switching linear dynamical systems (SLDSs) which was initially introduced by Pavlovic and Rehg. Starting with the need for the variational approach, we proceed to the derivation of the generic (model-independent) variational update formulas which are obtained under the mean field assumption. This leads us to the derivation of an approximate variational inference algorithm for an SLDS. The details of deriving the SLDS-specific variational update equations are presented.
  • Item
    Segmental Switching Linear Dynamic Systems
    (Georgia Institute of Technology, 2005) Oh, Sang Min ; Rehg, James M. ; Dellaert, Frank
    We introduce Segmental Switching Linear Dynamic Systems (S-SLDS), which improve on standard SLDSs by explicitly incorporating duration modeling capabilities. We show that S-SLDSs can adopt arbitrary finite-sized duration models that describe data more accurately than the geometric distributions induced by standard SLDSs. We also show that we can convert an S-SLDS to an equivalent standard SLDS with sparse structure in the resulting transition matrix. This insight makes it possible to adopt existing inference and learning algorithms for the standard SLDS models to the S-SLDS framework. As a consequence, the more powerful S-SLDS model can be adopted with only modest additional effort in most cases where an SLDS model can be applied. The experimental results on honeybee dance decoding tasks demonstrate the robust inference capabilities of the proposed S-SLDS model.
  • Item
    Data Driven MCMC for Appearance-based Topological Mapping
    (Georgia Institute of Technology, 2005) Dellaert, Frank ; Ranganathan, Ananth
    Probabilistic techniques have become the mainstay of robotic mapping, particularly for generating metric maps. In previous work, we have presented a hitherto nonexistent general purpose probabilistic framework for dealing with topological mapping. This involves the creation of Probabilistic Topological Maps (PTMs), a sample-based representation that approximates the posterior distribution over topologies given available sensor measurements. The PTM is inferred using Markov Chain Monte Carlo (MCMC) that overcomes the combinatorial nature of the problem. In this paper, we address the problem of integrating appearance measurements into the PTM framework. Specifically, we consider appearance measurements in the form of panoramic images obtained from a camera rig mounted on a robot. We also propose improvements to the efficiency of the MCMC algorithm through the use of an intelligent data-driven proposal distribution. We present experiments t hat illustrate the robustness and wide applicability of our algorithm.