Organizational Unit:
Institute for Robotics and Intelligent Machines (IRIM)

Research Organization Registry ID
Description
Previous Names
Parent Organization
Parent Organization
Includes Organization(s)
Organizational Unit
ArchiveSpace Name Record

Publication Search Results

Now showing 1 - 10 of 110
  • Item
    The role of trust and relationships in human-robot social interaction
    (Georgia Institute of Technology, 2009-11-10) Wagner, Alan Richard
    Can a robot understand a human's social behavior? Moreover, how should a robot act in response to a human's behavior? If the goals of artificial intelligence are to understand, imitate, and interact with human level intelligence then researchers must also explore the social underpinnings of this intellect. Our endeavor is buttressed by work in biology, neuroscience, social psychology and sociology. Initially developed by Kelley and Thibaut, social psychology's interdependence theory serves as a conceptual skeleton for the study of social situations, a computational process of social deliberation, and relationships (Kelley&Thibaut, 1978). We extend and expand their original work to explore the challenge of interaction with an embodied, situated robot. This dissertation investigates the use of outcome matrices as a means for computationally representing a robot's interactions. We develop algorithms that allow a robot to create these outcome matrices from perceptual information and then to use them to reason about the characteristics of their interactive partner. This work goes on to introduce algorithms that afford a means for reasoning about a robot's relationships and the trustworthiness of a robot's partners. Overall, this dissertation embodies a general, principled approach to human-robot interaction which results in a novel and scientifically meaningful approach to topics such as trust and relationships.
  • Item
    Effective robot task learning by focusing on task-relevant objects
    (Georgia Institute of Technology, 2009-10) Lee, Kyu Hwa ; Lee, Jinhan ; Thomaz, Andrea L. ; Bobick, Aaron F.
    In a robot learning from demonstration framework involving environments with many objects, one of the key problems is to decide which objects are relevant to a given task. In this paper, we analyze this problem and propose a biologically-inspired computational model that enables the robot to focus on the task-relevant objects. To filter out incompatible task models, we compute a task relevance value (TRV) for each object, which shows a human demonstrator's implicit indication of the relevance to the task. By combining an intentional action representation with `motionese', our model exhibits recognition capabilities compatible with the way that humans demonstrate. We evaluate the system on demonstrations from five different human subjects, showing its ability to correctly focus on the appropriate objects in these demonstrations.
  • Item
    Visual place categorization
    (Georgia Institute of Technology, 2009-07-06) Wu, Jianxin
    Knowing the semantic category of a robot's current position not only facilitates the robot's navigation, but also greatly improves its ability to serve human needs and to interpret the scene. Visual Place Categorization (VPC) is addressed in this dissertation, which refers to the problem of predicting the semantic category of a place using visual information collected from an autonomous robot platform. Census Transform (CT) histogram and Histogram Intersection Kernel (HIK) based visual codebooks are proposed to represent an image. CT histogram encodes the stable spatial structure of an image that reflects the functionality of a location. It is suitable for categorizing places and has shown better performance than commonly used descriptors such as SIFT or Gist in the VPC task. HIK has been shown to work better than the Euclidean distance in classifying histograms. We extend it in an unsupervised manner to generate visual codebooks for the CT histogram descriptor. HIK codebooks help CT histogram to deal with the huge variations in VPC and improve system accuracy. A computational method is also proposed to generate HIK codebooks in an efficient way. The first significant VPC dataset in home environments is collected and is made publicly available, which is also used to evaluate the VPC system based on the proposed techniques. The VPC system achieves promising results for this challenging problem, especially for important categories such as bedroom, bathroom, and kitchen. The proposed techniques achieved higher accuracies than competing descriptors and visual codebook generation methods.
  • Item
    Bayesian Surprise and Landmark Detection
    (Georgia Institute of Technology, 2009-05) Ranganathan, Ananth ; Dellaert, Frank
    Automatic detection of landmarks, usually special places in the environment such as gateways, for topological mapping has proven to be a difficult task. We present the use of Bayesian surprise, introduced in computer vision, for landmark detection. Further, we provide a novel hierarchical, graphical model for the appearance of a place and use this model to perform surprise-based landmark detection. Our scheme is agnostic to the sensor type, and we demonstrate this by implementing a simple laser model for computing surprise. We evaluate our landmark detector using appearance and laser measurements in the context of a topological mapping algorithm, thus demonstrating the practical applicability of the detector.
  • Item
    Accountable Autonomous Agents: The next level
    (Georgia Institute of Technology, 2009) Arkin, Ronald C.
  • Item
    Binding Balls: Fast Detection of Binding Sites Using a Property of Spherical Fourier Transform
    (Georgia Institute of Technology, 2009) Comin, Matteo ; Guerra, Concettina ; Dellaert, Frank
    The functional prediction of proteins is one of the most challenging problems in modern biology. An established computational technique involves the identification of threedimensional local similarities in proteins. In this article, we present a novel method to quickly identify promising binding sites. Our aim is to efficiently detect putative binding sites without explicitly aligning them. Using the theory of Spherical Harmonics, a candidate binding site is modeled as a Binding Ball. The Binding Ball signature, offered by the Spherical Fourier coefficients, can be efficiently used for a fast detection of putative regions. Our contribution includes the Binding Ball modeling and the definition of a scoring function that does not require aligning candidate regions. Our scoring function can be computed efficiently using a property of Spherical Fourier transform (SFT) that avoids the evaluation of all alignments. Experiments on different ligands show good discrimination power when searching for known binding sites. Moreover, we prove that this method can save up to 40% in time compared with traditional approaches.
  • Item
    Robot Deception: Recognizing when a Robot Should Deceive
    (Georgia Institute of Technology, 2009) Wagner, Alan R. ; Arkin, Ronald C.
    This article explores the possibility of developing robot control software capable of discerning when and if a robot should deceive. Exploration of this problem is critical for developing robots with deception capabilities and may lend valuable insight into the phenomena of deception itself. In this paper we explore deception from an interdependence/game theoretic perspective. Further, we develop and experimentally investigate an algorithm capable of indicating whether or not a particular social situation warrants deception on the part of the robot. Our qualitative and quantitative results provide evidence that, indeed, our algorithm recognizes situations which justify deception and that a robot capable of discerning these situations is better suited to act than one that does not.
  • Item
    Creating and Using Matrix Representations of Social Interaction
    (Georgia Institute of Technology, 2009) Wagner, Alan R.
    This paper explores the use of an outcome matrix as a computational representation of social interaction suitable for implementation on a robot. An outcome matrix expresses the reward afforded to each interacting individual with respect to pairs of potential behaviors. We detail the use of the outcome matrix as a representation of interaction in social psychology and game theory, discuss the need for modeling the robot’s interactive partner, and contribute an algorithm for creating outcome matrices from perceptual information. Experimental results explore the use of the algorithm with different types of partners and in different environments.
  • Item
    The Coordination of Deliberative Reasoning in a Mobile Robot
    (Georgia Institute of Technology, 2009) Ulam, Patrick D.
    This paper examines the problem of how a mobile robot may coordinate among multiple, possibly conflicting deliberative processes for reasoning about object interactions in a soccer domain. This paper frames deliberative coordination as an instance of the algorithm selection problem and describes a novel framework by which a mobile robot may learn to coordinate its deliberative reasoning in response to constraints upon processing as well as the performance of each deliberative reasoner. Results of the framework are described for a simulated soccer task in which the robot must predict the motion of a fast moving ball in order to prevent it from reaching the goal area.
  • Item
    Lek Behavior as a Model for Multi-Robot Systems
    (Georgia Institute of Technology, 2009-01-01) Duncan, Brittany A. ; Ulam, Patrick D. ; Arkin, Ronald C.
    Lek behavior is a biological mechanism used by male birds to attract mates by forming a group. This project explores the use of a biological behavior found in many species of birds to form leks to guide the creation of groups of robots. The lek behavior provides a sound basis for multi-robot formation because it demonstrates a group of individual entities forming up around a scarce resource. This behavior can be useful to robots in many situations, with an example scenario the case in which robots were dropped via parachute into an area and then needed to form meaningful task-oriented groups.