Organizational Unit:
Institute for Robotics and Intelligent Machines (IRIM)

Research Organization Registry ID
Description
Previous Names
Parent Organization
Parent Organization
Includes Organization(s)
Organizational Unit
ArchiveSpace Name Record

Publication Search Results

Now showing 1 - 10 of 553
  • Item
    A control theoretic perspective on learning in robotics
    (Georgia Institute of Technology, 2015-12-16) O'Flaherty, Rowland Wilde
    For robotic systems to continue to move towards ubiquity, robots need to be more autonomous. More autonomy dictates that robots need to be able to make better decisions. Control theory and machine learning are fields of robotics that focus on the decision making process. However, each of these fields implements decision making at different levels of abstraction and at different time scales. Control theory defines low-level decisions at high rates, while machine learning defines high-level decision at low rates. The objective of this research is to integrate tools from both machine leaning and control theory to solve higher dimensional, complex problems, and to optimize the decision making process. Throughout this research, multiple algorithms were created that use concepts from both control theory and machine learning, which provide new tools for robots to make better decisions. One algorithm enables a robot to learn how to optimally explore an unknown space, and autonomously decide when to explore for new information or exploit its current information. Another algorithm enables a robot to learn how to locomote with complex dynamics. These algorithms are evaluated both in simulation and on real robots. The results and analysis of these experiments are presented, which demonstrate the utility of the algorithms introduced in this work. Additionally, a new notion of “learnability” is introduced to define and determine when a given dynamical system has the ability to gain knowledge to optimize a given objective function.
  • Item
    Multirobot Coordination: From High-level Specification to Correct Execution
    ( 2015-12-02) Ayanian, Nora
    Using a group of robots in place of a single complex robot to accomplish a task has many benefits, including simplified system repair, less down time, and lower cost. Combining heterogeneous groups of these multi-robot systems allows addressing multiple subtasks in parallel, reducing the time it takes to address many problems, such as search and rescue, reconnaissance, and mine detection. These missions demand different roles for robots, necessitating a strategy for coordinated autonomy while respecting any constraints the environment may impose. Synthesis of control policies for heterogeneous multirobot systems is particularly challenging because of inter-robot constraints such as communication maintenance and collision avoidance, the need to coordinate robots within groups, and the dynamics of individual robots. I will present approaches to synthesizing feedback policies for navigating groups of robots in constrained environments. These approaches automatically and concurrently solve both the path planning and control synthesis problems, and are specified at a high level, for example, using an iPad interface to navigate a complex environment with a team of UAVs. I will also present some preliminary work on novel approaches to developing controllers for many types of multirobot tasks, by using crowdsourced multi-player game data.
  • Item
    Words, Pictures, and Common Sense
    ( 2015-12-01) Parikh, Devi
    As computer vision and natural language processing techniques are maturing, there is heightened activity in exploring the connection between images and language. In this talk, I will present several recent and ongoing projects in my lab that take a new perspective on problems like automatic image captioning, which are receiving a lot of attention lately. In particular, I will start by describing a new methodology for evaluating image-captioning approaches. I will then discuss image specificity — a concept capturing the phenomenon that some images are specific and elicit consistent descriptions from people, while other images are ambiguous and elicit a wider variety of descriptions from different people. Rather than think of this variance as noise, we model this as a signal. We demonstrate that modeling image specificity results in improved performance in applications such as text-based image retrieval. I will then talk about our work on leveraging visual common sense for seemingly non-visual tasks such as textual fill-in-the-blanks or paraphrasing. We propose imagining the scene behind the text to solve these problems. The imagination need not be photorealistic; so we imagine the scene as a visual abstraction using clipart. We show that jointly reasoning about the imagined scene and the text results in improved performance of these textual tasks than reasoning about the text alone. Finally, I will introduce a new task that pushes the understanding of language and vision beyond automatic image captioning — visual question answering (VQA). Not only does it involve computer vision and natural language processing, doing well at this task will require the machine to reason about visual and non-visual common sense, as well as factual knowledge bases. More importantly, it will require the machine to know when to tap which source of information. I will describe our ongoing efforts at collecting a first-of-its-kind, large VQA dataset that will enable the community to explore this rich, challenging, and fascinating task, which pushes the frontier towards truly AI-complete problems.
  • Item
    The Middle Child Problem: Revisiting Parametric Min-cut and Seeds for Object Proposals
    (Georgia Institute of Technology, 2015-12) Humayun, Ahmad ; Li, Fuxin ; Rehg, James M.
    Object proposals have recently fueled the progress in detection performance. These proposals aim to provide category-agnostic localizations for all objects in an image. One way to generate proposals is to perform parametric min-cuts over seed locations. This paper demonstrates that standard parametric-cut models are ineffective in obtaining medium-sized objects, which we refer to as the middle child problem. We propose a new energy minimization framework incorporating geodesic distances between segments which solves this problem. In addition, we introduce a new superpixel merging algorithm which can generate a small set of seeds that reliably cover a large number of objects of all sizes. We call our method POISE - "Proposals for Objects from Improved Seeds and Energies." POISE enables parametric min-cuts to reach their full potential. On PASCAL VOC it generates ~2,640 segments with an average overlap of 0.81, whereas the closest competing methods require more than 4,200 proposals to reach the same accuracy. We show detailed quantitative comparisons against 5 state-of-the-art methods on PASCAL VOC and Microsoft COCO segmentation challenges.
  • Item
    Temporal Heterogeneity and the Value of Slowness in Robotic Systems
    (Georgia Institute of Technology, 2015-12) Arkin, Ronald C. ; Egerstedt, Magnus B.
    Robot teaming is a well-studied area, but little research to date has been conducted on the fundamental benefits of heterogeneous teams and virtually none on temporal heterogeneity, where timescales of the various platforms are radically different. This paper explores this aspect of robot ecosystems consisting of fast and slow robots (SlowBots) working together, including the bio-inspiration for such systems.
  • Item
    Towards a terradynamics of legged locomotion on homogeneous and Heterogeneous granular media through robophysical approaches
    (Georgia Institute of Technology, 2015-11-16) Qian, Feifei
    The objective of this research is to discover principles of ambulatory locomotion on homogeneous and heterogeneous granular substrates and create models of animal and robot interaction within such environments. Since interaction with natural substrates is too complicated to model, we take a robophysics approach – we create a terrain generation system where properties of heterogeneous multi-component substrates can be systematically varied to emulate a wide range of natural terrain properties such as compaction, orientation, obstacle shape/size/distribution, and obstacle mobility within the substrate. A schematic of the proposed system is discussed in detail in the body of this dissertation. Control of such substrates will allow for the systematic exploration of parameters of substrate properties, particularly substrate stiffness and heterogeneities. With this terrain creation system, we systematically explore locomotor strategies of simplified laboratory robots when traversing over different terrain properties. A key feature of this proposed work is the ability to generate general interaction models of locomotor appendages with such complex substrates. These models will aid in the design and control of future robots with morphologies and control strategies that allow for effective navigation on a large diversity of terrains, expanding the scope of terramechanics from large tracked and treaded vehicles on homogeneous ground to arbitrarily shaped and actuated locomotors moving on complex heterogeneous terrestrial substrates.
  • Item
    Machine learning and dynamic programming algorithms for motion planning and control
    (Georgia Institute of Technology, 2015-11-16) Arslan, Oktay
    Robot motion planning is one of the central problems in robotics, and has received considerable amount of attention not only from roboticists but also from the control and artificial intelligence (AI) communities. Despite the different types of applications and physical properties of robotic systems, many high-level tasks of autonomous systems can be decomposed into subtasks which require point-to-point navigation while avoiding infeasible regions due to the obstacles in the workspace. This dissertation aims at developing a new class of sampling-based motion planning algorithms that are fast, efficient and asymptotically optimal by employing ideas from Machine Learning (ML) and Dynamic Programming (DP). First, we interpret the robot motion planning problem as a form of a machine learning problem since the underlying search space is not known a priori, and utilize random geometric graphs to compute consistent discretizations of the underlying continuous search space. Then, we integrate existing DP algorithms and ML algorithms to the framework of sampling-based algorithms for better exploitation and exploration, respectively. We introduce a novel sampling-based algorithm, called RRT#, that improves upon the well-known RRT* algorithm by leveraging value and policy iteration methods as new information is collected. The proposed algorithms yield provable guarantees on correctness, completeness and asymptotic optimality. We also develop an adaptive sampling strategy by considering exploration as a classification (or regression) problem, and use online machine learning algorithms to learn the relevant region of a query, i.e., the region that contains the optimal solution, without significant computational overhead. We then extend the application of sampling-based algorithms to a class of stochastic optimal control problems and problems with differential constraints. Specifically, we introduce the Path Integral - RRT algorithm, for solving optimal control of stochastic systems and the CL-RRT# algorithm that uses closed-loop prediction for trajectory generation for differential systems. One of the key benefits of CL-RRT# is that for many systems, given a low-level tracking controller, it is easier to handle differential constraints, so complex steering procedures are not needed, unlike most existing kinodynamic sampling-based algorithms. Implementation results of sampling-based planners for route planning of a full-scale autonomous helicopter under the Autonomous Aerial Cargo/Utility System Program (AACUS) program are provided.
  • Item
    Developing an engagement and social interaction model for a robotic educational agent
    (Georgia Institute of Technology, 2015-11-16) Brown, LaVonda N.
    Effective educational agents should accomplish four essential goals during a student's learning process: 1) monitor engagement, 2) re-engage when appropriate, 3) teach novel tasks, and 4) improve retention. In this dissertation, we focus on all of these objectives through use of a teaching device (computer, tablet, or virtual reality game) and a robotic educational agent. We begin by developing and validating an engagement model based on the interactions between the student and the teaching device. This model uses time, performance, and/or eye gaze to determine the student's level of engagement. We then create a framework for implementing verbal and nonverbal, or gestural, behaviors on a humanoid robot and evaluate its perception and effectiveness for social interaction. These verbal and nonverbal behaviors are applied throughout the learning scenario to re-engage the students when the engagement model deems it necessary. Finally, we describe and validate the entire educational system that uses the engagement model to activate the behavioral strategies embedded on the robot when learning a new task. We then follow-up this study to evaluate student retention when using this system. The outcome of this research is the development of an educational system that effectively monitors student engagement, applies behavioral strategies, teaches novel tasks, and improves student retention to achieve individualized learning.
  • Item
    Robots learning actions and goals from everyday people
    (Georgia Institute of Technology, 2015-11-16) Akgun, Baris
    Robots are destined to move beyond the caged factory floors towards domains where they will be interacting closely with humans. They will encounter highly varied environments, scenarios and user demands. As a result, programming robots after deployment will be an important requirement. To address this challenge, the field of Learning from Demonstration (LfD) emerged with the vision of programming robots through demonstrations of the desired behavior instead of explicit programming. The field of LfD within robotics has been around for more than 30 years and is still an actively researched field. However, very little research is done on the implications of having a non-robotics expert as a teacher. This thesis aims to bridge this gap by developing learning from demonstration algorithms and interaction paradigms that allow non-expert people to teach robots new skills. The first step of the thesis was to evaluate how non-expert teachers provide demonstrations to robots. Keyframe demonstrations are introduced to the field of LfD to help people teach skills to robots and compared with the traditional trajectory demonstrations. The utility of keyframes are validated by a series of experiments with more than 80 participants. Based on the experiments, a hybrid of trajectory and keyframe demonstrations are proposed to take advantage of both and a method was developed to learn from trajectories, keyframes and hybrid demonstrations in a unified way. A key insight from these user experiments was that teachers are goal oriented. They concentrated on achieving the goal of the demonstrated skills rather than providing good quality demonstrations. Based on this observation, this thesis introduces a method that can learn actions and goals from the same set of demonstrations. The action models are used to execute the skill and goal models to monitor this execution. A user study with eight participants and two skills showed that successful goal models can be learned from non- expert teacher data even if the resulting action models are not as successful. Following these results, this thesis further develops a self-improvement algorithm that uses the goal monitoring output to improve the action models, without further user input. This approach is validated with an expert user and two skills. Finally, this thesis builds an interactive LfD system that incorporates both goal learning and self-improvement and evaluates it with 12 naive users and three skills. The results suggests that teacher feedback during experiments increases skill execution and monitoring success. Moreover, non-expert data can be used as a seed to self-improvement to fix unsuccessful action models.
  • Item
    Developing robots that impact human-robot trust in emergency evacuations
    (Georgia Institute of Technology, 2015-11-10) Robinette, Paul
    High-risk, time-critical situations require trust for humans to interact with other agents even if they have never interacted with the agents before. In the near future, robots will perform tasks to help people in such situations, thus robots must understand why a person makes a trust decision in order to effectively aid the person. High casualty rates in several emergency evacuations motivate our use of this scenario as an example of a high-risk, time-critical situation. Emergency guidance robots can be stored inside of buildings then activated to search for victims and guide evacuees to safety. In this dissertation, we determined the conditions under which evacuees would be likely to trust a robot in an emergency evacuation. We began by examining reports of real-world evacuations and considering how guidance robots can best help. We performed two simulations of evacuations and learned that robots could be helpful as long as at least 30% of evacuees trusted their guidance instructions. We then developed several methods for a robot to communicate directional information to evacuees. After performing three rounds of evaluation using virtually, remotely and physically present robots, we concluded that robots should communicate directional information by gesturing with two arms. Next, we studied the effect of situational risk and the robot's previous performance on a participant's decision to use the robot during an interaction. We found that higher risk scenarios caused participants to align their self-reported trust with their decisions in a trust situation. We also discovered that trust in a robot drops after a single error when interaction occurs in a virtual environment. After an exploratory study in trust repair, we have learned that a robot can repair broken trust during the emergency by apologizing for its prior mistake or giving additional information relevant to the situation. Apologizing immediately after the error had no effect. Robots have the potential to save lives in emergency scenarios, but could have an equally disastrous effect if participants overtrust them. To explore this concept, we created a virtual environment of an office as well as a real-world simulation of an emergency evacuation. In both, participants interacted with a robot during a non-emergency phase to experience its behavior and then chose whether to follow the robot’s instructions during an emergency phase or not. In the virtual environment, the emergency was communicated through text, but in the real-world simulation, artificial smoke and fire alarms were used to increase the urgency of the situation. In our virtual environment, we confirmed our previous results that prior robot behavior affected whether participants would trust the robot or not. To our surprise, all participants followed the robot in the real-world simulation of an emergency, despite half observing the same robot perform poorly in a navigation guidance task just minutes before. We performed additional exploratory studies investigating different failure modes. Even when the robot pointed to a dark room with no discernible exit the majority of people did not choose to exit the way they entered. The conclusions of this dissertation are based on the results of fifteen experiments with a total of 2,168 participants (2,071 participants in virtual or remote studies conducted over the internet and 97 participants in physical studies on campus). We have found that most human evacuees will trust an emergency guidance robot that uses understandable information conveyance modalities and exhibits efficient guidance behavior in an evacuation scenario. In interactions with a virtual robot, this trust can be lost because of a single error made by the robot, but a similar effect was not found with real-world robots. This dissertation presents data indicating that victims in emergency situations may overtrust a robot, even when they have recently witnessed the robot malfunction. This work thus demonstrates concerns which are important to both the HRI and rescue robot communities.