Organizational Unit:
Institute for Robotics and Intelligent Machines (IRIM)

Research Organization Registry ID
Description
Previous Names
Parent Organization
Parent Organization
Includes Organization(s)
Organizational Unit
ArchiveSpace Name Record

Publication Search Results

Now showing 1 - 2 of 2
  • Item
    Dynamics of embodied dissociated cortical cultures for the control of hybrid biological robots.
    (Georgia Institute of Technology, 2007-11-14) Bakkum, Douglas James
    The thesis presents a new paradigm for studying the importance of interactions between an organism and its environment using a combination of biology and technology: embodying cultured cortical neurons via robotics. From this platform, explanations of the emergent neural network properties leading to cognition are sought through detailed electrical observation of neural activity. By growing the networks of neurons and glia over multi-electrode arrays (MEA), which can be used to both stimulate and record the activity of multiple neurons in parallel over months, a long-term real-time 2-way communication with the neural network becomes possible. A better understanding of the processes leading to biological cognition can, in turn, facilitate progress in understanding neural pathologies, designing neural prosthetics, and creating fundamentally different types of artificial cognition. Here, methods were first developed to reliably induce and detect neural plasticity using MEAs. This knowledge was then applied to construct sensory-motor mappings and training algorithms that produced adaptive goal-directed behavior. To paraphrase the results, most any stimulation could induce neural plasticity, while the inclusion of temporal and/or spatial information about neural activity was needed to identify plasticity. Interestingly, the plasticity of action potential propagation in axons was observed. This is a notion counter to the dominant theories of neural plasticity that focus on synaptic efficacies and is suggestive of a vast and novel computational mechanism for learning and memory in the brain. Adaptive goal-directed behavior was achieved by using patterned training stimuli, contingent on behavioral performance, to sculpt the network into behaviorally appropriate functional states: network plasticity was not only induced, but could be customized. Clinically, understanding the relationships between electrical stimulation, neural activity, and the functional expression of neural plasticity could assist neuro-rehabilitation and the design of neuroprosthetics. In a broader context, the networks were also embodied with a robotic drawing machine exhibited in galleries throughout the world. This provided a forum to educate the public and critically discuss neuroscience, robotics, neural interfaces, cybernetics, bio-art, and the ethics of biotechnology.
  • Item
    Control limitation analysis for dissipative passive haptic interfaces
    (Georgia Institute of Technology, 2005-11-18) Gao, Dalong
    This research addresses the ability of dissipative passive actuators to generate control effects on a passive haptic interface. A haptic display is a human-machine interface that constructs a sensation of touch for the human operator. Applications can be found in various industries, space, medicine and construction etc. A dissipative passive haptic display contains passive actuators that can remove energy from the system by resisting motions in the system. The advantage of a dissipative passive haptic display is better safety compared to an active display. Its disadvantage is the limited control ability from the passive actuators. This research starts with the identification of the control ability and limitations of dissipative passive haptic interfaces. The ability is identified as the steerability, the ability to redirect motions of a manipulator. The force generation analysis of each individual actuator is then selected as an approach to evaluate the steerability. Steerability metrics are defined to evaluate the steerability. Even though non-redundant manipulators dont have desired steerability, optimal steering configurations are found for the best operation. Steerability is improved by redundancy in serial or parallel structures. A theorem is developed to evaluate steerability for redundant manipulators. The influence of system dynamics on their steerabilities is discussed. Previously developed haptic interfaces are evaluated based on their steerabilities. Steerability analysis of three-dimensional haptic interfaces is also given to a limited extent as an extension of the two-dimensional cases. Brakes and clutches are the two types of dissipative passive actuators in this research.