Organizational Unit:
Institute for Robotics and Intelligent Machines (IRIM)

Research Organization Registry ID
Description
Previous Names
Parent Organization
Parent Organization
Includes Organization(s)
Organizational Unit
ArchiveSpace Name Record

Publication Search Results

Now showing 1 - 2 of 2
  • Item
    Multi-agent coordination: fluid-inspired and optimal control approaches
    (Georgia Institute of Technology, 2012-04-03) Kingston, Peter
    Multiagent coordination problems arise in a variety of applications, from satellite constellations and formation flight, to air traffic control and unmanned vehicle teams. We investigate the coordination of mobile agents using two kinds of approaches. In the first, which takes its inspiration from fluid dynamics and algebraic topology, control authority is split between mobile agents and a network of static infrastructure nodes - like wireless base stations or air traffic control towers - and controllers are developed that distribute their computation throughout this network. In the second, we look at networks of interconnected mechanical systems, and develop novel optimal control algorithms, which involve the computation of optimal deformations of time- and output- spaces, to achieve approximate formation tracking. Finally, we investigate algorithms that optimize these controllers to meet subjective criteria of humans.
  • Item
    Dynamic Chess: Strategic Planning for Robot Motion
    (Georgia Institute of Technology, 2011-05) Kunz, Tobias ; Kingston, Peter ; Stilman, Mike ; Egerstedt, Magnus B.
    We introduce and experimentally validate a novel algorithmic model for physical human-robot interaction with hybrid dynamics. Our computational solutions are complementary to passive and compliant hardware. We focus on the case where human motion can be predicted. In these cases, the robot can select optimal motions in response to human actions and maximize safety. By representing the domain as a Markov Game, we enable the robot to not only react to the human but also to construct an infinite horizon optimal policy of actions and responses. Experimentally, we apply our model to simulated robot sword defense. Our approach enables a simulated 7-DOF robot arm to block known attacks in any sequence. We generate optimized blocks and apply game theoretic tools to choose the best action for the defender in the presence of an intelligent adversary.