Organizational Unit:
Institute for Robotics and Intelligent Machines (IRIM)

Research Organization Registry ID
Description
Previous Names
Parent Organization
Parent Organization
Includes Organization(s)
Organizational Unit
ArchiveSpace Name Record

Publication Search Results

Now showing 1 - 10 of 46
  • Item
    Towards Planning in Generalized Belief Space
    (Georgia Institute of Technology, 2013-12) Indelman, Vadim ; Carlone, Luca ; Dellaert, Frank
    We investigate the problem of planning under uncertainty, which is of interest in several robotic applications, ranging from autonomous navigation to manipulation. Recent effort from the research community has been devoted to design planning approaches working in a continuous domain, relaxing the assumption that the controls belong to a finite set. In this case robot policy is computed from the current robot belief (planning in belief space), while the environment in which the robot moves is usually assumed to be known or partially known. We contribute to this branch of the literature by relaxing the assumption of known environment; for this purpose we introduce the concept of generalized belief space (GBS), in which the robot maintains a joint belief over its state and the state of the environment. We use GBS within a Model Predictive Control (MPC) scheme; our formulation is valid for general cost functions and incorporates a dual-layer optimization: the outer layer computes the best control action, while the inner layer computes the generalized belief given the action. The resulting approach does not require prior knowledge of the environment and does not assume maximum likelihood observations. We also present an application to a specific family of cost functions and we elucidate on the theoretical derivation with numerical examples.
  • Item
    Incremental Light Bundle Adjustment for Robotics Navigation
    (Georgia Institute of Technology, 2013-11) Indelman, Vadim ; Melim, Andrew ; Dellaert, Frank
    This paper presents a new computationally-efficient method for vision-aided navigation (VAN) in autonomous robotic applications. While many VAN approaches are capable of processing incoming visual observations, incorporating loop-closure measurements typically requires performing a bundle adjustment (BA) optimization, that involves both all the past navigation states and the observed 3D points. Our approach extends the incremental light bundle adjustment (LBA) method, recently developed for structure from motion [10], to information fusion in robotics navigation and in particular for including loop-closure information. Since in many robotic applications the prime focus is on navigation rather then mapping, and as opposed to traditional BA, we algebraically eliminate the observed 3D points and do not explicitly estimate them. Computational complexity is further improved by applying incremental inference. To maintain high-rate performance over time, consecutive IMU measurements are summarized using a recently-developed technique and navigation states are added to the optimization only at camera rate. If required, the observed 3D points can be reconstructed at any time based on the optimized robot’s poses. The proposed method is compared to BA both in terms of accuracy and computational complexity in a statistical simulation study.
  • Item
    Large-Scale Dense 3D Reconstruction from Stereo Imagery
    (Georgia Institute of Technology, 2013-11) Alcantarilla, Pablo F. ; Beall, Chris ; Dellaert, Frank
    In this paper we propose a novel method for large-scale dense 3D reconstruction from stereo imagery. Assuming that stereo camera calibration and camera motion are known, our method is able to reconstruct accurately dense 3D models of urban environments in the form of point clouds. We take advantage of recent stereo matching techniques that are able to build dense and accurate disparity maps from two rectified images. Then, we fuse the information from multiple disparity maps into a global model by using an efficient data association technique that takes into account stereo uncertainty and performs geometric and photometric consistency validation in a multi-view setup. Finally, we use efficient voxel grid filtering techniques to deal with storage requirements in large-scale environments. In addition, our method automatically discards possible moving obstacles in the scene. We show experimental results on real video large-scale sequences and compare our approach with respect to other state-of-the-art methods such as PMVS and StereoScan.
  • Item
    Optical Flow Templates for Superpixel Labeling in Autonomous Robot Navigation
    (Georgia Institute of Technology, 2013-11) Roberts, Richard ; Dellaert, Frank
    Instantaneous image motion in a camera on-board a mobile robot contains rich information about the structure of the environment. We present a new framework, optical flow templates, for capturing this information and an experimental proof-of-concept that labels superpixels using them. Optical flow templates encode the possible optical flow fields due to egomotion for a specific environment shape and robot attitude. We label optical flow in superpixels with the environment shape they image according to how consistent they are with each template. Specifically, in this paper we employ templates highly relevant to mobile robot navigation. Image regions consistent with ground plane and distant structure templates likely indicate free and traversable space, while image regions consistent with neither of these are likely to be nearby objects that are obstacles. We evaluate our method qualitatively and quantitatively in an urban driving scenario, labeling the ground plane, and obstacles such as passing cars, lamp posts, and parked cars. One key advantage of this framework is low computational complexity, and we demonstrate per-frame computation times of 20ms, excluding optical flow and superpixel calculation.
  • Item
    Support-Theoretic Subgraph Preconditioners for Large-Scale SLAM
    (Georgia Institute of Technology, 2013-11) Jian, Yong-Dian ; Balcan, Doru ; Panageas, Ioannis ; Tetali, Prasad ; Dellaert, Frank
    Efficiently solving large-scale sparse linear systems is important for robot mapping and navigation. Recently, the subgraph-preconditioned conjugate gradient method has been proposed to combine the advantages of two reigning paradigms, direct and iterative methods, to improve the efficiency of the solver. Yet the question of how to pick a good subgraph is still open. In this paper, we propose a new metric to measure the quality of a spanning tree preconditioner based on support theory. We use this metric to develop an algorithm to find good subgraph preconditioners and apply them to solve the SLAM problem. The results show that although the proposed algorithm is not fast enough, the new metric is effective and resulting subgraph preconditioners significantly improve the efficiency of the state-of-the-art solver.
  • Item
    Monocular Parallel Tracking and Mapping with Odometry Fusion for MAV Navigation in Feature-Lacking Environments
    (Georgia Institute of Technology, 2013-11) Ta, Duy-Nguyen ; Ok, Kyel ; Dellaert, Frank
    Despite recent progress, autonomous navigation on Micro Aerial Vehicles with a single frontal camera is still a challenging problem, especially in feature-lacking environ- ments. On a mobile robot with a frontal camera, monoSLAM can fail when there are not enough visual features in the scene, or when the robot, with rotationally dominant motions, yaws away from a known map toward unknown regions. To overcome such limitations and increase responsiveness, we present a novel parallel tracking and mapping framework that is suitable for robot navigation by fusing visual data with odometry measurements in a principled manner. Our framework can cope with a lack of visual features in the scene, and maintain robustness during pure camera rotations. We demonstrate our results on a dataset captured from the frontal camera of a quad- rotor flying in a typical feature-lacking indoor environment.
  • Item
    Information Fusion in Navigation Systems via Factor Graph Based Incremental Smoothing
    (Georgia Institute of Technology, 2013-08) Indelman, Vadim ; Williams, Stephen ; Kaess, Michael ; Dellaert, Frank
    This paper presents a new approach for high-rate information fusion in modern inertial navigation systems, that have a variety of sensors operating at different frequencies. Optimal information fusion corresponds to calculating the maximum a posteriori estimate over the joint probability distribution function (pdf) of all states, a computationally-expensive process in the general case. Our approach consists of two key components, which yields a flexible, high-rate, near-optimal inertial navigation system. First, the joint pdf is represented using a graphical model, the factor graph, that fully exploits the system sparsity and provides a plug and play capability that easily accommodates the addition and removal of measurement sources. Second, an efficient incremental inference algorithm over the factor graph is applied, whose performance approaches the solution that would be obtained by a computationally-expensive batch optimization at a fraction of the computational cost. To further aid high-rate performance, we introduce an equivalent IMU factor based on a recently developed technique for IMU pre-integration, drastically reducing the number of states that must be added to the system. The proposed approach is experimentally validated using real IMU and imagery data that was recorded by a ground vehicle, and a statistical performance study is conducted in a simulated aerial scenario. A comparison to conventional fixed-lag smoothing demonstrates that our method provides a considerably improved trade-off between computational complexity and performance.
  • Item
    DDF-SAM 2.0: Consistent Distributed Smoothing and Mapping
    (Georgia Institute of Technology, 2013-05) Cunningham, Alexander ; Indelman, Vadim ; Dellaert, Frank
    This paper presents an consistent decentralized data fusion approach for robust multi-robot SLAM in dan- gerous, unknown environments. The DDF-SAM 2.0 approach extends our previous work by combining local and neigh- borhood information in a single, consistent augmented local map, without the overly conservative approach to avoiding information double-counting in the previous DDF-SAM algo- rithm. We introduce the anti-factor as a means to subtract information in graphical SLAM systems, and illustrate its use to both replace information in an incremental solver and to cancel out neighborhood information from shared summarized maps. This paper presents and compares three summarization techniques, with two exact approaches and an approximation. We evaluated the proposed system in a synthetic example and show the augmented local system and the associated summarization technique do not double-count information, while keeping performance tractable.
  • Item
    Path Planning with Uncertainty: Voronoi Uncertainty Fields
    (Georgia Institute of Technology, 2013-05) Ok, Kyel ; Ansari, Sameer ; Gallagher, Billy ; Sica, William ; Dellaert, Frank ; Stilman, Mike
    In this paper, a two-level path planning algorithm that deals with map uncertainty is proposed. The higher level planner uses modified generalized Voronoi diagrams to guarantee finding a connected path from the start to the goal if a collision-free path exists. The lower level planner considers uncertainty of the observed obstacles in the environment and assigns repulsive forces based on their distance to the robot and their positional uncertainty. The attractive forces from the Voronoi nodes and the repulsive forces from the uncertainty- biased potential fields form a hybrid planner we call Voronoi Uncertainty Fields (VUF). The proposed planner has two strong properties: (1) bias against uncertain obstacles, and (2) completeness. We analytically prove the properties and run simulations to validate our method in a forest-like environment.
  • Item
    Autonomous Flight in GPS-Denied Environments Using Monocular Vision and Inertial Sensors
    (Georgia Institute of Technology, 2013-04) Wu, Allen D. ; Johnson, Eric N. ; Kaess, Michael ; Dellaert, Frank ; Chowdhary, Girish
    A vision-aided inertial navigation system that enables autonomous flight of an aerial vehicle in GPS-denied environments is presented. Particularly, feature point information from a monocular vision sensor are used to bound the drift resulting from integrating accelerations and angular rate measurements from an Inertial Measurement Unit (IMU) forward in time. An Extended Kalman filter framework is proposed for performing the tasks of vision-based mapping and navigation separately. When GPS is available, multiple observations of a single landmark point from the vision sensor are used to estimate the point’s location in inertial space. When GPS is not available, points that have been sufficiently mapped out can be used for estimating vehicle position and attitude. Simulation and flight test results of a vehicle operating autonomously in a simplified loss-of-GPS scenario verify the presented method.