Organizational Unit:
Institute for Robotics and Intelligent Machines (IRIM)

Research Organization Registry ID
Description
Previous Names
Parent Organization
Parent Organization
Includes Organization(s)
Organizational Unit
ArchiveSpace Name Record

Publication Search Results

Now showing 1 - 2 of 2
  • Item
    The Bayes Tree: Enabling Incremental Reordering and Fluid Relinearization for Online Mapping
    (Georgia Institute of Technology, 2010-01-29) Kaess, Michael ; Ila, Viorela ; Roberts, Richard ; Dellaert, Frank
    In this paper we present a novel data structure, the Bayes tree, which exploits the connections between graphical model inference and sparse linear algebra. The proposed data structure provides a new perspective on an entire class of simultaneous localization and mapping (SLAM) algorithms. Similar to a junction tree, a Bayes tree encodes a factored probability density, but unlike the junction tree it is directed and maps more naturally to the square root information matrix of the SLAM problem. This makes it eminently suited to encode the sparse nature of the problem, especially in a smoothing and mapping (SAM) context. The inherent sparsity of SAM has already been exploited in the literature to produce efficient solutions in both batch and online mapping. The graphical model perspective allows us to develop a novel incremental algorithm that seamlessly incorporates reordering and relinearization. This obviates the need for expensive periodic batch operations from previous approaches, which negatively affect the performance and detract from the intended online nature of the algorithm. The new method is evaluated using simulated and real-world datasets in both landmark and pose SLAM settings.
  • Item
    Visual SLAM with a Multi-Camera Rig
    (Georgia Institute of Technology, 2006) Kaess, Michael ; Dellaert, Frank
    Camera-based simultaneous localization and mapping or visual SLAM has received much attention recently. Typically single cameras, multiple cameras in a stereo setup or omni-directional cameras are used. We propose a different approach, where multiple cameras can be mounted on a robot in an arbitrary configuration. Allowing the cameras to face in different directions yields better constraints than single cameras or stereo setups can provide, simplifying the reconstruction of large-scale environments. And in contrast to omni-directional sensors, the available resolution can be focused on areas of interest depending on the application. We describe a sparse SLAM approach that is suitable for real-time reconstruction from such multi-camera configurations. We have implemented the system and show experimental results in a large-scale environment, using a custom made eight-camera rig.