Organizational Unit:
Institute for Robotics and Intelligent Machines (IRIM)

Research Organization Registry ID
Description
Previous Names
Parent Organization
Parent Organization
Includes Organization(s)
Organizational Unit
ArchiveSpace Name Record

Publication Search Results

Now showing 1 - 3 of 3
  • Item
    A realistic benchmark for visual indoor place recognition
    (Georgia Institute of Technology, 2009-08) Pronobis, A. ; Caputo, B. ; Jensfelt, Patric ; Christensen, Henrik I.
    An important competence for a mobile robot system is the ability to localize and perform context interpretation. This is required to perform basic navigation and to facilitate local specific services. Recent advances in vision have made this modality a viable alternative to the traditional range sensors and visual place recognition algorithms emerged as a useful and widely applied tool for obtaining information about robot’s position. Several place recognition methods have been proposed using vision alone or combined with sonar and/or laser. This research calls for standard benchmark datasets for development, evaluation and comparison of solutions. To this end, this paper presents two carefully designed and annotated image databases augmented with an experimental procedure and extensive baseline evaluation. The databases were gathered in an uncontrolled indoor office environment using two mobile robots and a standard camera. The acquisition spanned across a time range of several months and different illumination and weather conditions. Thus, the databases are very well suited for evaluating the robustness of algorithms with respect to a broad range of variations, often occurring in real-world settings. We thoroughly assessed the databases with a purely appearance-based place recognition method based on Support Vector Machines and two types of rich visual features (global and local).
  • Item
    Towards robust place recognition for robot localization
    (Georgia Institute of Technology, 2008-05) Ullah, M. M. ; Pronobis, A. ; Caputo, B. ; Luo, J. ; Jensfelt, Patric ; Christensen, Henrik I.
    Localization and context interpretation are two key competences for mobile robot systems. Visual place recognition, as opposed to purely geometrical models, holds promise of higher flexibility and association of semantics to the model. Ideally, a place recognition algorithm should be robust to dynamic changes and it should perform consistently when recognizing a room (for instance a corridor) in different geographical locations. Also, it should be able to categorize places, a crucial capability for transfer of knowledge and continuous learning. In order to test the suitability of visual recognition algorithms for these tasks, this paper presents a new database, acquired in three different labs across Europe. It contains image sequences of several rooms under dynamic changes, acquired at the same time with a perspective and omnidirectional camera, mounted on a socket. We assess this new database with an appearance-based algorithm that combines local features with support vector machines through an ad-hoc kernel. Results show the effectiveness of the approach and the value of the database.
  • Item
    A Discriminative Approach to Robust Visual Place Recognition
    (Georgia Institute of Technology, 2006-10) Pronobis, A. ; Caputo, B. ; Jensfelt, Patric ; Christensen, Henrik I.
    An important competence for a mobile robot system is the ability to localize and perform context interpretation. This is required to perform basic navigation and to facilitate local specific services. Usually localization is performed based on a purely geometric model. Through use of vision and place recognition a number of opportunities open up in terms of flexibility and association of semantics to the model. To achieve this the present paper presents an appearance based method for place recognition. The method is based on a large margin classifier in combination with a rich global image descriptor. The method is robust to variations in illumination and minor scene changes. The method is evaluated across several different cameras, changes in time-of-day and weather conditions. The results clearly demonstrate the value of the approach.