Organizational Unit:
Institute for Robotics and Intelligent Machines (IRIM)

Research Organization Registry ID
Description
Previous Names
Parent Organization
Parent Organization
Includes Organization(s)
Organizational Unit
ArchiveSpace Name Record

Publication Search Results

Now showing 1 - 5 of 5
  • Item
    Robust state estimation for the control of flexible robotic manipulators
    (Georgia Institute of Technology, 2013-07-16) Post, Brian Karl
    In this thesis, a novel robust estimation strategy for observing the system state variables of robotic manipulators with distributed flexibility is established. Motivation for the derived approach stems from the observation that lightweight, high speed, and large workspace robotic manipulators often suffer performance degradation because of inherent structural compliance. This flexibility often results in persistent residual vibration, which must be damped before useful work can resume. Inherent flexibility in robotic manipulators, then, increases cycle times and shortens the operational lives of the robots. Traditional compensation techniques, those which are commonly used for the control of rigid manipulators, can only approach a fraction of the open-loop system bandwidth without inducing significant excitation of the resonant dynamics. To improve the performance of these systems, the structural flexibility cannot simply be ignored, as it is when the links are significantly stiff and approximate rigid bodies. One thus needs a model to design a suitable compensator for the vibration, but any model developed to correct this problem will contain parametric error. And in the case of very lightly damped systems, like flexible robotic manipulators, this error can lead to instability of the control system for even small errors in system parameters. This work presents a systematic solution for the problem of robust state estimation for flexible manipulators in the presence of parametric modeling error. The solution includes: 1) a modeling strategy, 2) sensor selection and placement, and 3) a novel, multiple model estimator. Modeling of the FLASHMan flexible gantry manipulator is accomplished using a developed hybrid transfer matrix / assumed modes method (TMM/AMM) approach to determine an accurate low-order state space representation of the system dynamics. This model is utilized in a genetic algorithm optimization in determining the placement of MEMs accelerometers for robust estimation and observability of the system’s flexible state variables. The initial estimation method applied to the task of determining robust state estimates under conditions of parametric modeling error was of a sliding mode observer type. Evaluation of the method through analysis, simulations and experiments showed that the state estimates produced were inadequate. This led to the development of a novel, multiple model adaptive estimator. This estimator utilizes a bank of similarly designed sub-estimators and a selection algorithm to choose the true value from a given set of possible system parameter values as well as the correct state vector estimate. Simulation and experimental results are presented which demonstrate the applicability and effectiveness of the derived method for the task of state variable estimation for flexible robotic manipulators.
  • Item
    Matching feedback with operator intent for efficient human-machine interface
    (Georgia Institute of Technology, 2012-11-09) Elton, Mark David
    Various roles for operators in human-machine systems have been proposed. This thesis shows that all of these views have in common the fact that operators perform best when given feedback that matches their intent. Past studies have shown that position control is superior to rate control except when operating large-workspace and/or dynamically slow manipulators and for exact tracking tasks. Operators of large-workspace and/or dynamically slow manipulators do not receive immediate position feedback. To remedy this lack of position feedback, a ghost arm overlay was displayed to operators of a dynamically slow manipulator, giving feedback that matches their intent. Operators performed several simple one- and two-dimensional tasks (point-to-point motion, tracking, path following) with three different controllers (position control with and without a ghost, rate control) to indicate how task conditions influence operator intent. Giving the operator position feedback via the ghost significantly increased performance with the position controller and made it comparable to performance with the rate control. These results were further validated by testing coordinated position control with and without a ghost arm and coordinated rate control on an excavator simulator. The results show that position control with the ghost arm is comparable, but not superior to rate control for the dynamics of our excavator example. Unlike previous work, this research compared the fuel efficiencies of different HMIs, as well as the time efficiencies. This work not only provides the design law of matching the feedback to the operator intent, but also gives a guideline for when to choose position or rate control based on the speed of the system.
  • Item
    Human-in-the-loop control for cooperative human-robot tasks
    (Georgia Institute of Technology, 2012-03-29) Chipalkatty, Rahul
    Even with the advance of autonomous robotics and automation, many automated tasks still require human intervention or guidance to mediate uncertainties in the environment or to execute the complexities of a task that autonomous robots are not yet equipped to handle. As such, robot controllers are needed that utilize the strengths of both autonomous agents, adept at handling lower level control tasks, and humans, superior at handling higher-level cognitive tasks. To address this need, we develop a control theoretic framework that seeks to incorporate user commands such that user intention is preserved while an automated task is carried out by the controller. This is a novel approach in that system theoretic tools allow for analytic guarantees of feasibility and convergence to goal states which naturally lead to varying levels of autonomy. We develop a model predictive controller that takes human input, infers human intent, then applies a control that minimizes deviations from the intended human control while ensuring that the lower-level automated task is being completed. This control framework is then evaluated in a human operator study involving a shared control task with human guidance of a mobile robot for navigation. These theoretical and experimental results lay the foundation for applying this control method for human-robot cooperative control to actual human-robot tasks. Specifically, the control is applied to a Urban Search and Rescue robot task where the shared control of a quadruped rescue robot is needed to ensure static stability during human-guided leg placements in uneven terrain. This control framework is also extended to a multiple user and multiple agent system where the human operators control multiple agents such that the agents maintain a formation while allowing the human operators to manipulate the shape of the formation. User studies are also conducted to evaluate the control in multiple operator scenarios.
  • Item
    Development of a multi-platform simulation for a pneumatically-actuated quadruped robot
    (Georgia Institute of Technology, 2011-11-18) Daepp, Hannes Gorkin
    Successful development of mechatronic systems requires a combination of targeted hardware and software design. The compact rescue robot (CRR), a quadruped pneumatically-actuated walking robot that seeks to use the benefits garnered from pneumatic power, is a prime example of such a system. This thesis discusses the development and testing of a simulation that will aid in further design and development of the CRR by enabling users to examine the impacts of pneumatic actuation on a walking robot. However, development of an entirely new dynamic simulation specific to the system is not practical. Instead, the simulation combines a MATLAB/Simulink actuator simulation with a readily available C++ dynamics library. This multi-platform approach results in additional incurred challenges due to the transfer of data between the platforms. As a result, the system developed here is designed in the fashion that provides the best balance of realistic behavior, model integrity, and practicality. An analytically derived actuator model is developed using classical fluid circuit modeling together with nonlinear area and pressure curves to model the valve and a Stribeck-Tanh model to characterize the effects of friction on the cylinder. The valve model is designed in Simulink and validated on a single degree-of-freedom test rig. This actuator model is then interfaced with SrLib, a dynamics library that computes dynamics of the robot and interactions with the environment, and validated through comparisons with a CRR prototype. Conclusions are focused on the final composition of the simulation, its performance and limitations, and the benefits it offers to the system as a whole.
  • Item
    Control limitation analysis for dissipative passive haptic interfaces
    (Georgia Institute of Technology, 2005-11-18) Gao, Dalong
    This research addresses the ability of dissipative passive actuators to generate control effects on a passive haptic interface. A haptic display is a human-machine interface that constructs a sensation of touch for the human operator. Applications can be found in various industries, space, medicine and construction etc. A dissipative passive haptic display contains passive actuators that can remove energy from the system by resisting motions in the system. The advantage of a dissipative passive haptic display is better safety compared to an active display. Its disadvantage is the limited control ability from the passive actuators. This research starts with the identification of the control ability and limitations of dissipative passive haptic interfaces. The ability is identified as the steerability, the ability to redirect motions of a manipulator. The force generation analysis of each individual actuator is then selected as an approach to evaluate the steerability. Steerability metrics are defined to evaluate the steerability. Even though non-redundant manipulators dont have desired steerability, optimal steering configurations are found for the best operation. Steerability is improved by redundancy in serial or parallel structures. A theorem is developed to evaluate steerability for redundant manipulators. The influence of system dynamics on their steerabilities is discussed. Previously developed haptic interfaces are evaluated based on their steerabilities. Steerability analysis of three-dimensional haptic interfaces is also given to a limited extent as an extension of the two-dimensional cases. Brakes and clutches are the two types of dissipative passive actuators in this research.