Organizational Unit:
School of Architecture

Research Organization Registry ID
Description
Previous Names
Parent Organization
Parent Organization
Organizational Unit
Includes Organization(s)

Publication Search Results

Now showing 1 - 5 of 5
  • Item
    Building thermoregulation based on the adaptive building envelope
    (Georgia Institute of Technology, 2020-01-09) Zeng, Zhaoyun
    In contrast to the traditional building envelope, which tries to block the thermal and mass exchange between the indoor and outdoor environments as much as possible, the adaptive building envelope (ABE) can admit the favorable environmental factors while block the adverse ones to reduce the building load as well as improve the thermal and visual comfort of the occupants. This thesis is intended to facilitate the research of ABE by (1) Clarifying the definition of ABE and offer conceptualizations that are important to the research. (2) Investigating the energy saving potential of ABE technologies by associating these technologies with four weather variables. The results of this investigation can be used in the selection of ABE technologies. (3) Summarizing the existing modelling methods for ABE technologies. If the modelling methods for certain ABE technologies do not exist, they will be developed in this thesis. (4) Reviewing and categorizing the optimization approaches adopted in previous studies on ABE. Recommendations are also made for choosing the appropriate optimization approaches in different application scenarios. (5) Developing a generic optimization framework for ABE that can guide the formulation of optimization problems in different application scenarios. (6) Conducting three application studies that can enrich the optimization framework and serve as paradigms for using the optimization framework in different application scenarios.
  • Item
    Addressing data informativeness in risk-conscious building performance simulation applications
    (Georgia Institute of Technology, 2017-08-02) Li, Qi
    Building performance management remains an important aspect in reducing building energy consumption and enhancing occupants’ thermal comfort and work productivity. Recent decades witnessed the maturity and proliferation of numerous methods, software and tools that span the whole spectrum of common building performance management practice. Among those related research and applications, the use of information and data in calibration and validation of building performance simulation (BPS) models constitutes an important subject of study especially in fault detection, operations management, and retrofit analysis. An extensive review of BPS model calibration and validation studies reveals two major research gaps. First, contemporary model calibration practice calls for an effective and robust method that can systematically incorporate a variety of information and data, handle modelling and prediction uncertainties, and maintain consistent model performance. Second, current approaches to collecting information and data in real practice largely depend on individual experience or common practice; further study is needed to understand the value of information and data, i.e. assess data informativeness, such as to support specific decision-making processes in choosing data monitoring strategies and to avoid missed opportunities or wasted resources. To this end, this dissertation develops a new framework to address data informativeness in model calibration and validation to answer two major research questions: 1) how to make optimal use of available information and data to calibrate a building simulation model under uncertainty, and 2) how to quantify the informativeness of information and data for risk-conscious building performance simulation applications. This framework builds upon uncertainty propagation using detailed measurements, and inverse modelling using Bayesian inference. It introduces probabilistic performance metrics to assess model prediction consistency and quantify data informativeness. Following an explanation of the framework’s theoretical soundness, this dissertation provides two case studies to demonstrate its practical effectiveness. The first is a controlled experiment in the Flexlab test facility at Lawrence Berkeley lab. A new validation methodology is proposed to validate a simulation model under uncertainty, in which the validation criteria build upon the introduced probabilistic performance metrics. Given the experiment setup, uncertainty propagation based on synthetic measurements is applied, which effectively improves prediction agreement and reduces the risk of accepting invalid simulation outcomes. The second is to determine the appropriate model form and metering data for a hypothetical intervention analysis of an existing building with hydronic heating on the Cambridge, UK campus. A three-level modelling method is proposed to enable modelling all thermal processes occurring in individual rooms while efficiently modelling the whole building to estimate heating system performance. Different sets of metering data are then used to calibrate the physical model, and the result indicates the superiority of Bayesian inference in exploiting the value of data, the necessity of room temperature and electricity monitoring under uncontrolled conditions, and the potential of daily metering data for calibration in real building performance management practice.
  • Item
    Application of inverse modeling to performance-based architectural design in the early stage
    (Georgia Institute of Technology, 2016-05-31) Rezaee, Roya
    The architecture, engineering, and construction community is taking action to reduce energy consumption. Fulfilling energy performance requirements entails complex decision-making at the architectural design stage, when a large number of parameters are undecided and the level of uncertainty is high. The early stage of design, in particular, is characterized by its iterative nature of divergent phases in which design alternatives are generated and convergent phases in which alternatives are assessed and selected. It is during or at the end of these phases that decision-making occurs under considerable uncertainty. Therefore, the methods and tools applied during these phases should account for the iterative, complex, and uncertain characteristics of the design process. At present, the building industry lacks a consistent approach to decision making during the phrases of the early stage of design: The divergent phase, when concepts are generated, consists of no practical framework within which designers generate more promising alternatives regarding energy performance, and the convergent phase, when concepts are evaluated and selected, includes no algorithm within it that designers can use to validate their decisions and provide confidence in their decisions. These deficiencies necessitate a clear step-wise approach that supports the proper design exploration by generation and evaluation of design alternatives, highlights significant parameters regarding energy performance for a variety of design scenarios, allows for coupled decisions under uncertainty, and align with the iterative nature of design process. This research hypothesizes that (1) a new systematic method based on linear inverse modeling (LIM) can generate plausible ranges for design parameters given a preferred thermal energy performance at the early stage of architectural design; and (2) the application of the proposed approach can lead to a higher probability of achieving energy efficient buildings (increase the chances of developing promising concepts), which is the main objective of performance-based design; and finally (3) in comparison to the current prescriptive approach, the proposed performance-based method help designers with the design process by providing more design freedom and guidance. Such an approach also accounts for the iterative nature of an architectural design and promotes a step-by-step procedure for making a decision and updating information as each new decision is made. In contrast to the conventional “forward modeling” in building performance analysis in which the design parameters are considered input and the energy performance are output, the “inverse modeling” deals with the performance objective as input and the design parameters are inferred as the output of the analysis. The study practices the proposed inverse modeling approach for making decisions regarding energy performance at the early design stages in four case studies, representing two different types of buildings in four climate zones. Such practices show the capability of the proposed inverse modeling to help designers in design space exploration, sequential decision-making, and trade-off study at the early stage of design. This method is proven to be a validate candidate for fulfilling desired energy performance and provide guidance and freedom in building design process. This thesis research contributes to the body of knowledge pertaining to building energy modeling and decision making at the early design stage, and its framework can be used by all groups of designers, the energy analysis experts as well as non-energy-expert architects, for a more informed decision-making regarding energy.
  • Item
    Thermo-hygroscopic envelope to support alternative cooling systems: speculative feasibility study in a small office building
    (Georgia Institute of Technology, 2014-09-02) Marshall, Marionyt Tyrone
    The thesis explores the technical feasibility of an alternative method of decoupling air-conditioning systems function within the context of ecological issues. The system is a variant of dedicated outdoor air systems to separate dehumidification and cooling in air conditioning equipment. The project specifically investigates locating these components within the building envelope. Placement in the envelope moves the systems closer to fresh air and offers architectural expression for components that are normally out of sight. Designers, engineers, building science, mechanical, structural, biologist, and architectural engineers ideally as agents offer beneficial improvement to the system. The reduction in size of components into the building envelope offers risk. The thesis design space uses historical works, biological analogues, and past work to ground the technical understanding of the topic. Specific use of biological inspired design realizes translation from other systems to improve the alternative decoupled air conditioning system. The thesis develops prototype models for lighting analysis and for sensible and latent heat calculations. Psychrometric charts serve as tools to understand the thermodynamic air-conditioning process in conventional direct expansion vapor compression and solar liquid desiccant air conditioning systems. Data, models, and sketches provide tools for improvements to the 'thick' building envelope. Finally, the diagrams translate into functional decompositions for modifications to improve the system. The thesis probes the constraints in the areas of cost, fabrication, and technology that may not yet exist for selective improvement rather than a barrier to development of the thesis.
  • Item
    A study on the heat transfer and energy performance implications of cool roofs
    (Georgia Institute of Technology, 2013-11-26) Zhang, Tianyao
    In this study, we examined the effect of cool roofs on commercial and residential buildings in each climate zone, by looking at monitored case studies and DOE-2 simulations from various sources of literature; and using an online tool - the Cool Roof Calculator and a simple COP ratio model to validate the results of the case studies. It was found that the Cool Roof Calculator does not take building form into account, hence a sensitivity analysis was first conducted to rank the importance of various building parameters against one another. The analysis was conducted on the EPC normative building energy model. Results indicated that roof absorptance coefficient, aspect ratio and number of floors were the three parameters that either ranked highest or were important parameters, and were chosen for further parametric analysis to evaluate the impact of these building parameters on total building loads. A simple COP ratio model was also developed to validate the results from the literature review and Cool Roof Calculator, and it was found that in terms of cost, for a prototype medium-sized commercial building, it is always beneficial to use a white roof, but cities in northern climates may have little advantage, and insulation may be a better choice.