Title:
Soft, Responsive and Semiconducting Gels

No Thumbnail Available
Author(s)
Rosu, Cornelia
Russo, Paul S.
Reichmanis, Elsa
Authors
Advisor(s)
Advisor(s)
Editor(s)
Associated Organization(s)
Series
Collections
Supplementary to
Abstract
Interaction of biopolymers with organic electronic materials provides an appealing opportunity to design electroactive materials for use in many applications especially bioelectronics. Because of their biocompatibility, polypeptides do not act just as simple bio- components; rather they effectively influence the organization of π-conjugated polymers into highly crystalline structures that allow charge transport. The talk will focus on poly(γ-benzyl-L-glutamate), PBLG, a synthetic polypeptide that forms thermoreversible tree-dimensional networks. Blends with poly(3-hexylthiophene), P3HT, resulted in gel materials able to switch reversibly on and off their photo-physical properties. This behavior was observed during two cycles of heating-cooling-aging. Enhanced alignment of P3HT chains into J-aggregate structures, ideal for effective electronic performance, was attributed to interactions between the PBLG benzyl side chains and P3HT hexyl arms.
Sponsor
Georgia Institute of Technology. College of Sciences
Georgia Institute of Technology. Institute for Materials
Georgia Institute of Technology. Parker H. Petit Institute for Bioengineering and Bioscience
Georgia Institute of Technology. School of Materials Science and Engineering
Georgia Institute of Technology. School of Physics
American Physical Society
Exxon Mobil Corporation
National Science Foundation (U.S.)
Date Issued
2018-04-20
Extent
10:26 minutes
Resource Type
Moving Image
Resource Subtype
Lecture
Rights Statement
Rights URI