Title:
Planetary Probe Entry, Descent, and Landing Systems: Technology Advancements, Cost, and Mass Evaluations with Application to Future Titan Exploration Missions

dc.contributor.author Ong, Chester en_US
dc.contributor.author Bieber, Ben S. en_US
dc.contributor.author Needham, Jennifer en_US
dc.contributor.author Huo, Bing en_US
dc.contributor.author Magee, Angela en_US
dc.contributor.author Montuori, Craig en_US
dc.contributor.author Ko, Chiwan en_US
dc.contributor.author Peterson, Craig en_US
dc.contributor.corporatename Georgia Institute of Technology. Space Systems Design Lab en_US
dc.date.accessioned 2006-01-24T14:46:06Z en_US
dc.date.accessioned 2006-03-03T21:13:38Z
dc.date.available 2006-01-24T14:46:06Z en_US
dc.date.available 2006-03-03T21:13:38Z
dc.date.issued 2005-11-10 en_US
dc.description This conference features the work of authors from: Georgia Tech’s Space Systems Design Lab, Aerospace Systems Design Lab, School of Aerospace Engineering, Georgia Tech Research Institute; NASA’s Jet Propulsion Laboratory, Marshall Space Flight Center, Goddard Space Flight Center, Langley Research Center; and other aerospace industry and academic institutions en_US
dc.description.abstract Heritage is the double-edged sword in space systems engineering. Reliance on heritage can ensure redundant success but will diminish advancements in science and technology that are integral to the success of future missions. Current reliance on heritage flight hardware is due to the absolute cost ceilings and short development timetables. Since the pre-phase A design stage mandates that system engineers establish complex and crucial decisions governing the mission design, system engineers would greatly benefit from an apples-to-apples comparison of the mass and cost benefits from different technologies across a range of performance parameters. The Cost and Mass Evaluation of Technology (CoMET) removes the “hand-waving” arguments in EDL technology benefits, and identifies possible points of diminishing returns for the advancement of specific technologies. Ultimately, CoMET: EDL is a design-to-cost model that answers the following question: Would further technology development just be “polishing the cannonball?” EDL sub-systems include, but are not limited to, aeroshell and thermal protection entry systems; parachute systems; powered descent and landing systems; power systems; and in-situ exploration systems of aerobots. CoMET explores the technology trades between mass and cost in the collaborative engineering environment regarding key technology areas and launch vehicle considerations. To demonstrate CoMET’s potential in confronting future mission concepts that require new operational approaches and technology advancements, a planetary probe mission is designed around the exploration of Saturn’s moon, Titan. In January 14, 2005, the planetary probe Huygens befell Titan’s surface in search of life’s origins. On the Titan-Huygens probe, the limitations of communications relay geometry and battery power vastly restricted the operational time, scientific goals, and total returns of this mission. Without the improvement of battery efficiency or the evolution of nuclear power systems, state of the art technology will always restrict planetary scientists to short-duration missions and miniscule data sampling. Furthermore, to capitalize on each planet’s or moon’s unique environment, future probes will require innovative systems of in-situ exploration, such as blimps for mobility in dense atmospheres. This paper explores mass, cost, and technology trade-offs of an airship among several EDL technologies within general mission requirements of a mission to Titan. en_US
dc.description.sponsorship AIAA Space Systems Technical Committee ; AIAA Space Transportation Systems Technical Committee ; Space Technology Advanced Research Center en_US
dc.format.extent 788171 bytes en_US
dc.format.extent 1913 bytes
dc.format.extent 788171 bytes
dc.format.mimetype application/pdf en_US
dc.format.mimetype text/plain
dc.format.mimetype application/pdf
dc.identifier.uri http://hdl.handle.net/1853/8049
dc.language.iso en_US en_US
dc.publisher Georgia Institute of Technology en_US
dc.relation.ispartofseries SSEC05. Session F; GT-SSEC.F.1 en_US
dc.subject Cost and Mass Evaluation of Technology (CoMET) en_US
dc.subject Space systems engineering en_US
dc.subject Entry, Descent, and Landing (EDL) technology en_US
dc.subject Titan mission en_US
dc.title Planetary Probe Entry, Descent, and Landing Systems: Technology Advancements, Cost, and Mass Evaluations with Application to Future Titan Exploration Missions en_US
dc.type Text
dc.type.genre Presentation
dspace.entity.type Publication
local.contributor.corporatename Aerospace Systems Design Laboratory (ASDL)
local.relation.ispartofseries Space Systems Engineering Conference
relation.isOrgUnitOfPublication a8736075-ffb0-4c28-aa40-2160181ead8c
relation.isSeriesOfPublication a55c7ee7-6ea7-4115-bdc9-63faecf45826
Files
Original bundle
Now showing 1 - 1 of 1
Thumbnail Image
Name:
SSEC_SF1_doc.pdf
Size:
769.7 KB
Format:
Adobe Portable Document Format
Description:
License bundle
Now showing 1 - 1 of 1
No Thumbnail Available
Name:
license.txt
Size:
1.87 KB
Format:
Plain Text
Description:
Collections