Title:
Single-operator Multi-vehicle Human-Automation Interface Study dataset

Thumbnail Image
Author(s)
Feigh, Karen M.
Johnson, Eric N.
Christmann, Hans Claus
Authors
Advisor(s)
Advisor(s)
Editor(s)
Associated Organization(s)
Series
Supplementary to
Abstract
With the achievement of autonomous flight for small unmanned aircraft, currently ongoing research is expanding the capabilities of systems utilizing such vehicles for various tasks. This allows shifting the research focus from the individual systems to task execution benefits resulting from interaction and collaboration of several aircraft. Given that some available high-fidelity simulations do not yet support multi-vehicle scenarios, a multi-vehicle framework has been introduced which allows several individual single-vehicle systems to be combined into a larger multi-vehicle scenario with little to no special requirements towards the single-vehicle systems. The created multi-vehicle system offers real-time software-in-the-loop simulations of vehicle teams across multiple hosts and enables a single operator to command and control a several unmanned aircraft beyond line-of-sight in geometrically correct two-dimensional cluttered environments through a multi-hop network of data relaying intermediaries. The related dissertation by Christmann presents the main aspects of the developed system: the underlying software framework and application programming interface, the utilized inter- and intrasystem communication architecture, the graphical user interface, and implemented algorithms and operator aid heuristics to support the management and placement of the vehicles.The effectiveness of the aid heuristics is validated through a human subject study which showed that the provided operator support systems significantly improve the operators' performance in a simulated first responder scenario. This dataset contains the collected data of that human subject study.
Sponsor
Date Issued
2015-05
Extent
Resource Type
Dataset
Resource Subtype
Rights Statement
Rights URI