Title:
Development of dual-fiber array laser ultrasonic system for inspecting and assessing area-array microelectronic packages

dc.contributor.advisor Sitaraman, Suresh K.
dc.contributor.author Busi Reddy, Vishnu Vardhan Reddy
dc.contributor.committeeMember Sabra, Karim
dc.contributor.committeeMember Harris, Tequila
dc.contributor.committeeMember Wong, C. P.
dc.contributor.committeeMember Swaminathan, Madhavan
dc.contributor.department Mechanical Engineering
dc.date.accessioned 2020-09-08T12:44:29Z
dc.date.available 2020-09-08T12:44:29Z
dc.date.created 2020-08
dc.date.issued 2020-05-14
dc.date.submitted August 2020
dc.date.updated 2020-09-08T12:44:29Z
dc.description.abstract Failures in solder ball interconnects makes a microelectronic packaging system inoperable. These failures often result from defects during assembly and/or due to damage accrued from thermo-mechanical and other loads during operation after the assembly. Currently, both destructive testing, as well as non-destructive testing such as X-ray and acoustic microscopy, are being used to detect solder interconnection defects and failures. However, both destructive and non-destructive testing have significant limitations. Therefore, there is an increased demand for a reliable and robust inspection technique for the evaluation of solder ball interconnections, especially in area-array microelectronic packages. The objective of this research is to develop a fast, robust, low cost, non-contact, non-destructive, accurate, and highly sensitive Dual-Fiber Array Laser Ultrasonic System (DALUS) for inspecting and assessing area-array microelectronic packages. DALUS is a significant path forward of the previous Single Laser Ultrasonic System (SLUS) in the sense that this newly developed system has dual laser beams to excite at two spatially-distinct locations and thus allowing higher total energy to be delivered onto the microelectronic package under inspection. The higher laser energy produces higher strength ultrasound waves in the test sample, which will improve the sensitivity of the system as well as facilitate the inspection of large and multi-leveled packages. This developed system is employed to detect failures in industrial packages subjected to drop testing, thermal cycling, and mechanical bend testing. The utility of the developed system is demonstrated in a holistic manner through these tests which produced different sizes and nature of cracks at various locations. In parallel to the experiments, finite-element simulations are carried out to correlate the damage predictions from the simulations and the experimental results. Also, the measurement capability of DALUS is verified as per the industrial standards using gage repeatability and reproducibility analysis.
dc.description.degree Ph.D.
dc.format.mimetype application/pdf
dc.identifier.uri http://hdl.handle.net/1853/63590
dc.language.iso en_US
dc.publisher Georgia Institute of Technology
dc.subject Laser ultrasonic inspection
dc.subject Microelectronic packaging
dc.subject Non-destructive Inspection
dc.title Development of dual-fiber array laser ultrasonic system for inspecting and assessing area-array microelectronic packages
dc.type Text
dc.type.genre Dissertation
dspace.entity.type Publication
local.contributor.advisor Sitaraman, Suresh K.
local.contributor.corporatename George W. Woodruff School of Mechanical Engineering
local.contributor.corporatename College of Engineering
relation.isAdvisorOfPublication 86701d63-9ca5-4060-89f8-aca6e0b267f6
relation.isOrgUnitOfPublication c01ff908-c25f-439b-bf10-a074ed886bb7
relation.isOrgUnitOfPublication 7c022d60-21d5-497c-b552-95e489a06569
thesis.degree.level Doctoral
Files
Original bundle
Now showing 1 - 1 of 1
Thumbnail Image
Name:
BUSIREDDY-DISSERTATION-2020.pdf
Size:
8.84 MB
Format:
Adobe Portable Document Format
Description:
License bundle
Now showing 1 - 1 of 1
No Thumbnail Available
Name:
LICENSE.txt
Size:
3.88 KB
Format:
Plain Text
Description: