Title:
The regulation of cellular trafficking of the human lysophosphatidic acid receptor 1: identification of the molecular determinants required for receptor trafficking
The regulation of cellular trafficking of the human lysophosphatidic acid receptor 1: identification of the molecular determinants required for receptor trafficking
Author(s)
Urs, Nikhil Mahabir
Advisor(s)
Merrill, Alfred H.
Radhakrishna, Harish
Radhakrishna, Harish
Editor(s)
Collections
Supplementary to
Permanent Link
Abstract
The following thesis research was undertaken to gain a better understanding of the mechanisms that regulate the cellular trafficking and signaling of the endothelial differentiation gene (EDG) family of G-protein coupled receptors, LPA1, LPA2, and LPA3. This thesis will specifically focus on the regulation of the trafficking of the LPA1 Lysophosphatidic acid receptor, which is the most widely expressed and has been shown to be a major regulator of migration of cells expressing it.
The initial studies undertaken in this project were aimed at understanding the endocytic pathway followed by the LPA1 receptor. Lysophosphatidic acid (LPA), an abundant serum phospholipid, stimulates heterotrimeric G protein signaling by activating three closely related receptors, termed LPA1, LPA2 and LPA3. In the first part of the project we show that in addition to promoting LPA1 signaling, membrane cholesterol is essential for the association of LPA1 with β-arrestin, which leads to signal attenuation and clathrin dependent endocytosis of LPA1.
The second phase of the project was aimed at elucidating the different structural motifs required for the trafficking and signaling of the LPA1 receptor and helping us gain a more mechanistic view of the processes involved in its regulation. In the second part of the project we show that agonist-independent internalization of the LPA1 receptor is clathrin adaptor, AP-2 dependent and PKC-dependent and that it requires a distal dileucine motif, whereas agonist-dependent internalization of the LPA1 receptor is β-arrestin and clathrin-dependent and requires a cluster of serine residues in the tail region, which is upstream of the dileucine motif.
These studies collectively vastly enhance our understanding of mechanisms that regulate LPA1 trafficking and signaling. These studies can also be applied to other G-protein coupled receptors making the task easier for other scientists to understand this vast family of receptors.
Sponsor
Date Issued
2007-05-16
Extent
Resource Type
Text
Resource Subtype
Dissertation