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SUMMARY 

 

The following thesis research was undertaken to gain a better understanding of the 

mechanisms that regulate the cellular trafficking and signaling of the endothelial 

differentiation gene (EDG) family of G-protein coupled receptors LPA1, LPA2 and LPA3. 

This project specifically focussed on the regulation of the trafficking of the LPA1 

Lysophosphatidic acid receptor.  

The initial studies undertaken in this project were aimed at understanding the 

endocytic pathway followed by the LPA1 receptor. Lysophosphatidic acid (LPA) 

stimulates heterotrimeric G protein signaling by activating three closely related receptors, 

termed LPA1, LPA2 and LPA3. In the first part of the project, we show that membrane 

cholesterol, in addition to promoting LPA1 signaling, is essential for the association of 

LPA1 with β-arrestin, which leads to signal attenuation and clathrin dependent 

endocytosis of LPA1. Reduction of clathrin heavy chain expression, using small 

interfering RNAs, inhibited LPA1 endocytosis. LPA1 endocytosis was also inhibited in β-

arrestin 1 and 2-null mouse embryo fibroblasts (β-arrestin 1/2 KO MEFs), but was 

restored upon re-expression of wild-type β-arrestin 2. β-arrestin attenuates LPA signaling 

as LPA1-dependent phosphoinositide hydrolysis was significantly elevated in β-arrestin 

1/2 KO MEFs and was reduced to wild-type levels upon re-expression of wild-type β-

arrestin. Interestingly, extraction of membrane cholesterol with methyl-β-cyclodextrin 

inhibited LPA1 signaling, β-arrestin membrane recruitment and LPA1 endocytosis. 

Cholesterol repletion restored all of these functions. However, neither the stimulation of 
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phosphoinositide hydrolysis by the M1 acetylcholine receptor nor its endocytosis was 

affected by cholesterol extraction. LPA treatment increased the detergent resistance of 

LPA1 and this was inhibited by cholesterol extraction, suggesting that LPA1 localizes to 

detergent-resistant membranes upon ligand stimulation. These data indicate that although 

LPA1 is internalized by clathrin- and β-arrestin dependent endocytosis, membrane 

cholesterol is critical for LPA1 signaling, membrane recruitment of β-arrestins and LPA1 

endocytosis. 

The second phase of the project was aimed at elucidating the different structural 

motifs required for the trafficking and signaling of the LPA1 receptor and helping us gain 

a more mechanistic view of the processes involved in its regulation. The LPA1 receptor is 

the most widely expressed and has been shown to be a major regulator of migration of 

cells expressing it. In the second part of the project we show that agonist-independent 

internalization of the LPA1 receptor is clathrin adaptor, AP-2 and PKC-dependent and 

that it requires a distal dileucine motif, whereas agonist-dependent internalization of the 

LPA1 receptor is β-arrestin and clathrin-dependent and requires a cluster of serine 

residues in the tail region, which is upstream of the dileucine motif. Exposure to the PKC 

inhibitor, Bisindolylmaleimide I (Bis I) inhibited both basal and phorbol 12-myristate 13-

acetate (PMA)-induced internalization but not LPA-induced internalization. A cluster of 

serine residues in the tail region of the LPA1 receptor was required for LPA-induced 

internalization, β-arrestin2 GFP translocation to the plasma membrane and signal 

desensitization. In contrast, a dileucine motif (IL) was required for both basal and PMA-

induced internalization. Interestingly, β-arrestin2 GFP failed to translocate to the plasma 

membrane upon brief PMA exposure. Additionally, unlike LPA treatment, upon PMA 
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exposure the LPA1 receptor internalized in β-arrestin 1/2 KO MEFs suggesting that 

PMA-dependent internalization is β-arrestin independent. To identify the alternate 

adaptor protein required for agonist-independent internalization, we treated the 

LPA1/HeLa cells with siRNA against AP-2 to reduce endogenous protein expression 

levels. Treatment with AP-2 siRNA inhibited basal and PMA-induced internalization and 

partially inhibited LPA-induced internalization. These results indicate that agonist-

dependent internalization is β-arrestin dependent and PKC-independent and requires a 

cluster of serines in the tail region, whereas agonist-independent internalization is AP-2 

and PKC-dependent, β-arrestin independent and requires a dileucine motif in the tail 

region.  

These studies collectively vastly enhance our understanding of mechanisms that 

regulate LPA1 trafficking and signaling. These studies can also be applied to other G-

protein coupled receptors making the task easier for other scientists to understand this 

vast family of receptors. 
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CHAPTER 1 
 

INTRODUCTION 
 
 
 

1.1 G-protein Coupled Receptors 
 
1.1.1 What are GPCRs? 

  All organisms, unicellular and multicellular, need to perceive their 

environment for survival. Most organisms achieve this by utilizing proteins that are 

embedded on their outer membrane region called receptors. These integral membrane 

receptors can recognize numerous molecules allowing a cell or an organism to 

perceive different stimuli in its external environment. G-protein coupled receptors 

(GPCRs) or seven trans-membrane receptors (7TMRs) are the largest family of 

integral membrane proteins and can respond to a variety of stimuli such as light, odor, 

pheromones, taste, hormones and neurotransmitters. GPCRs can respond to a variety 

of molecules ranging from photons, tastants, and odorants to lipids, ions, peptides and 

amines (1). GPCRs have been found in all eukaryotes including yeast, plants, insects 

and mammals(2). Due to their ability to recognize numerous molecules and signals, 

GPCRs regulate a number of physiological processes in complex animals such as 

inflammation, light and pain perception, chemotaxis, development and 

neurotransmission (1, 3, 4).  

In humans, GPCRs are encoded by over 800 genes and have a characteristic 

seven trans-membrane structure (5, 6). The typical GPCR has an extracellular N-

terminal domain; seven trans-membrane domains connected by three intracellular and  
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Figure 1 A G-protein Coupled Receptor (GPCR). The typical GPCR has an N-
terminal domain, seven transmembrane (TM) domains, 3 exoloops and 3 cytoloops 
and a C-terminal domain. The GPCR activated by its cognate ligand binds to and 
activates heterotrimeric G-proteins that have 3 subunits α, β and γ. Activation of 
heterotrimeric G-proteins leads to an exchange of GDP for GTP leading to various 
downstream signaling cascades in the cell. 
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three extracellular loops (7). Their complex structure allows for the recognition and 

interaction with a myriad variety of molecules both extracellular and intracellular. 

GPCRs transduce external signals to intracellular second messengers that 

allow the cells to translate them into messages that are physiologically relevant and to 

respond accordingly. The process of signal transduction first involves the binding of a 

ligand to its cognate GPCR. The binding of ligand causes the GPCR to stabilize into 

an active conformation leading to an interaction with intracellular heterotrimeric GTP 

binding proteins (G-proteins) (Figure 2). Heterotrimeric G-proteins are intracellular 

proteins that are bound to GDP in their nascent stage and exchange the GDP for GTP 

when bound to active GPCRs. The heterotrimeric G-proteins have 3 subunits α, β and 

γ (Figure 1). Human G proteins are derived from approximate 35 genes, which 

include 16 genes encoding α-subunits, 5 encoding β-subunits, and 14 encoding γ-

subunits (6). 

 The α subunit is divided into four classes: Gαs, Gαi, Gαq, Gα12/13, based on 

their ability to activate different effector proteins (Figure 2). A GPCR can bind to either 

one or more Gα subunits, thus increasing the complexity of a response. Activation of the 

GPCR leads to the activation of the heterotrimeric G-protein, which now exchanges 

GTP for GDP on the α subunit. The α and βγ subunits separate from each other and 

go on to either negatively or positively regulate downstream effector proteins (Figure 

2). The activation of GPCRs not only leads to activation of heterotrimeric G-proteins 

and its effectors but also leads to negative regulation of G-protein binding, receptor 

internalization and G-protein independent signaling. 
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Figure 2. Diversity of G-protein-coupled receptor signaling. A variety of molecules 
can bind to and activate more than 800 different GPCRs. The major effectors of GPCRs 
are the heterotrimeric G-proteins that have α, β and γ subunits. The α subunits are of four 
type’s viz. Gαs, Gαi, Gαq, and Gα12/13. These α subunits can regulate various effector 
proteins on the plasma membrane, in the cytosol or in the nucleus.  
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1.1.2 GPCR signaling and trafficking 

 GPCR signaling can be divided into G-protein-dependent and –independent 

signaling. G-protein dependent signaling involves the interaction with heterotrimeric 

G-proteins. As mentioned before, upon activation the four classes of heterotrimeric 

G-proteins (Gαs, Gαi, Gαq, Gα12/13) can regulate a variety of downstream effectors. 

Typically Gαs stimulates adenylyl cyclase and increases levels of cAMP leading to 

activation of cAMP activated protein kinase, PKA. In contrast, Gαi inhibits adenylyl 

cyclase activity and decreases cAMP levels leading to reduction in active PKA levels.  

Additionally, Gαi has been shown to activate the small GTPase Rac-1 leading to 

changes in lamellipodia formation causing changes in the migratory behavior of cells 

(8). Gαq stimulates Phospholipase C β (PLCβ) which in turn cleaves 

phosphoinositide-4, 5-bisphosphate (PIP2) to diacylglycerol (DAG) and inositol 

trisphosphate (IP3). IP3 can then activate its cognate receptors on the endoplasmic 

reticulum (ER) membrane and cause the release of stored Ca2+ ions. DAG then 

recruits Protein kinase C (PKC) to the plasma membrane and Ca2+ ions bind to and 

activate PKC (9, 10). Additionally, Gαi has been shown to activate PLCβ, albeit the 

activation is many magnitudes lower than that of Gαq induced activation (9). Gα12/13 

has been shown to stimulate Rho-GTPases that causes a change in actin dynamics of 

the cell. In addition to these four subfamilies of Gα, Gαt (transducin) is a type of Gα 

subunit that regulates cGMP phosphodiesterase activity in the light system in the eye. 

Apart from the α subunit the βγ subunits (Gβγ) can also regulate various downstream 

effector proteins such as ion channels, lipid kinase PI3Kγ, PLCβ, src Kinases and G-

protein receptor kinases (GRKs) (11). The βγ subunits have also been shown to 
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transactivate the EGF receptor through src kinases leading to Ras-GTPase activation 

and subsequent MAPK phosphorylation and transcription of nuclear genes (11, 12). 

Activation of src kinases through βγ subunits can also lead to direct activation of Ras-

GTPases and MAPK phosphorylation (11). Although one ligand molecule stimulates 

one GPCR, the GPCR in turn can activate multiple second messenger molecules 

causing signal amplification. Therefore these complex interconnected GPCR 

signaling pathways can regulate many physiological responses such as migration, 

growth, cell division, inflammation, development and immunity. 

In order to maintain physiological responsiveness biological systems 

constantly need to diminish their initial response to external stimuli. This process is 

termed as desensitization or signal attenuation or adaptation (7). Signal 

desensitization mainly involves the impairment of the interaction of receptor with 

heterotrimeric G-proteins. Desensitization is a multi-step process that includes: 1) 

phosphorylation of the receptor by kinases, 2) binding of phosphorylated residues by 

arrestins, 3) endocytosis and 4) recycling of the receptor back to the plasma 

membrane (resensitization). Desensitization that occurs as a result of exposure to the 

receptors cognate ligand is termed as homologous desensitization, whereas 

desensitization that is mediated due to activation of other receptor systems is termed 

as heterologous desensitization. Homologous desensitization can be mediated by 

cytosolic kinases known as G-protein receptor kinases (GRKs), whereas heterologous 

desensitization typically involves GPCR phosphorylation by second messenger 

dependent kinases, protein kinase A (PKA) and protein kinase C (PKC). Heterologous 

desensitization probably has a more prolonged and global effect as compared to 
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homologous desensitization, thus affecting multiple responses. To date seven 

subfamilies of GRKs have been identified and so far have been shown to regulate 

desensitization of multiple receptor systems (1). GRKs have been shown to 

phosphorylate serine or threonine residues on cytosolic domains of GPCRs (13). 

Second messenger dependent kinases such as PKA and PKC have been shown to 

phosphorylate GPCRs either through feedback mechanisms or by heterologous 

desensitization. Additionally, apart from desensitization, PKC phosphorylation has 

also been implicated in receptor trafficking (14, 15). Desensitization is indeed an 

important step in the physiology of a cell as failure to desensitize can cause diseases 

such as retinitis pigmentosa (16) and on the other hand up-regulation of GRK activity 

can lead to diseases like myocardial ischemia and chronic heart failure (7).  

 Once a GPCR has been phosphorylated by GRKs after agonist stimulation, a 

cytosolic protein known as arrestin can now bind to the GPCR and mediate 

endocytosis (17). GPCR endocytosis is a major mechanism that is employed to 

control the number of cell surface receptors (1).  The internalization and intracellular 

trafficking of GPCRs is important: 1) for rapidly “turning off” GPCR signaling 

(desensitization), 2) for recycling internalized receptors back to the cell surface 

(resensitization), (18, 19) and 3) for long-term receptor down-regulation through 

degradation in lysosomes (20). The sorting of GPCRs to lysosomes serves the purpose 

of attenuating signaling over an extended period of time, as a result of prolonged 

receptor activation. However, extracellular signals can be attenuated rapidly at the 

cell surface by phosphorylation of certain residues in the GPCR tail, in an endocytosis 

independent manner (19, 21). As mentioned before, GPCRs at the plasma membrane 
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are phosphorylated by G-protein Receptor Kinase (GRKs) upon agonist binding (7) or 

by Protein Kinase C (PKC). These phosphorylated receptors on the cell surface can 

then interact with certain proteins called β-arrestins that bind to these phosphorylated 

residues on the C-terminal tail or the third intracellular loops and physically inhibit 

the interaction of the GPCR with heterotrimeric G-proteins causing signal attenuation 

(7, 21). This serves the purpose of rapid resensitization of receptors via sorting to 

various intracellular compartments where membrane bound phosphatases 

dephosphorylate these receptors. The dephosphorylated receptors are then recycled 

back to the surface for another round of ligand-induced activation. Furthermore, these 

β-arrestin proteins can interact with AP2 and clathrin and therefore localize the 

receptors towards clathrin-coated pits causing receptor internalization (22-24) (Figure 

3). In addition to removing receptors from the cell surface, endocytosis effectively 

removes the ligand from the surface also.  

 Typically, GPCRs like the β2AR, PAR-1 and M1mAChR utilize clathrin-

dependent pathways for internalization (13) (Figure 3). Alternatively, many GPCRs 

like the ETAA, S1P1 and Bradykinin B2 receptors utilize a clathrin-independent 

pathway (25). The clathrin-dependent pathway is one of the most well characterized 

pathways of internalization. Clathrin-independent pathways are still not well 

understood and further research needs to be done in this field. Most clathrin-

independent pathways utilized by GPCRs are either cholesterol- or caveolae-

dependent or dependent on both.  
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Figure 3. GPCR trafficking pathways. Upon agonist stimulation GPCRs localize to 
Clathrin coated pits (CCPs) and internalize into endosomes. After internalization the 
GPCR can either recyle back to the surface or be degraded in lysosomes.  
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These GPCRs localize to specialized microdomains in the plasma membrane termed 

as Lipid rafts or Detergent resistant membranes (DRMs). These lipid rafts/DRMs are 

characteristically enriched in cholesterol and glycosphingolipids and are sites for 

signal transduction for various proteins. A subset of lipid rafts are also enriched in a 

protein called Caveolin, which acts as an alternative endocytic adaptor protein(26, 

27). Caveolae were first identified as flask shaped invaginations located at or near the 

plasma membrane and upon detergent extraction ended up in the same fractions as 

lipid rafts. Caveolin, like clathrin, forms a coat around membrane invaginations and 

mediates internalization. Many signaling proteins like the α subunit of heterotrimeric 

G-proteins, eNOS and src-like tyrosine kinases have been shown to localize to lipid 

rafts. Association and localization of GPCRs with lipid rafts/DRMs can vary from 

receptor to receptor. GPCRs like the Endothelin ETA, ETB, Sphingosine-1 phosphate 

S1P1, Chemokine CCR5 and Bradykinin B2 receptors are enriched in lipid 

rafts/DRMs in the nascent stage and internalize via a lipid raft pathway (25), whereas 

certain GPCRs like the Somatostatin SST2 receptor “move into” lipid rafts upon 

agonist stimulation and internalize via a caveolae/lipid raft pathway (28). 

Alternatively, GPCRs like the Angiotensin AT1 move into lipid rafts upon agonist 

stimulation to activate specific signaling events and then again move out of lipid rafts 

to internalize via CCPs (29). Finally, the β2AR in some cells has been shown to be 

localized to lipid rafts in the nascent stage but moves out of lipid rafts upon agonist 

stimulation and internalizes via CCPs (30). Thus each GPCR seems to have its own 

itinerary probably based upon the location of its interactors or downstream effectors. 
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Internalization and desensitization are important processes involved in signal attenuation 

and recycling of receptors back to the surface. As mentioned before, β-arrestins are also 

important determinants in the process of desensitization and internalization. Another 

important process involved in recycling of receptors back to the cell surface is called 

resensitization, which is a crucial step in maintaining physiological responsiveness. β-

arrestins have also been shown to play an important role in resensitization (19). Based on 

the kinetics of β-arrestin association 2 classes of GPCRs that have been defined: 1) the 

GPCRs that transiently associate with β-arrestin at the plasma membrane and therefore 

recycle and resensitize rapidly (Class A) and 2) GPCRs that associate with β-arrestins at 

the plasma membrane and remain associated with it on endosomes, resulting in slow 

recycling and resensitization (Class B) (31) (Figure 4). It has also been shown that the C-

terminal tail of GPCRs dictates this differential association and that this differential 

trafficking is completely reversed, when the C-terminal tails of two receptors belonging 

to the 2 classes are switched. It has been shown that specific serine and threonine residues 

on the C-terminal tail of GPCRs are phosphorylated and that the presence of acidic 

residues adjacent to these residues increases the probability of phosphorylation. Recent 

studies have shown an additional role for β-arrestins in modulating signaling responses, 

specifically for class B receptors. Class B receptors have β-arrestin bound to them on 

endosomes and the β-arrestins can then interact with signaling molecules like MAP 

Kinases (ERK) and induce signaling responses while present on endosomes (32). Thus β-

arrestins have a multi-faceted role in both GPCR signaling and trafficking. Although 

most GPCRs utilize β-arrestin as an adaptor protein there are some GPCRs like the PAR-

1 receptor do not require β-arrestin for internalization (33).  
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Figure 4. β-arrestin association with GPCRs regulates internalization and recycling 
kinetics. Agonist-dependent activation of GPCRs leads to their phosphorylation and 
binding of β-arrestin. The arrestin-receptor complex is targeted to clathrin-coated pits 
(CCPs). In the case of Class A receptors, the arrestin-receptor complex is transient and 
the receptors rapidly recycle back to the PM, whereas for Class B receptors the arrestin-
receptor interaction is not transient and arrestin remains bound to receptor on endosomes 
resulting in slow recycling of receptors back to the PM.     
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These GPCRs use an alternative adaptor protein, AP-2, for internalization. AP-2 

mediated internalization has been shown to regulate both agonist-dependent and -

independent internalization of GPCRs.    

 Although the classical view is that GPCRs on the plasma membrane work as 

single monomers, recent evidence has suggested that many GPCRs can also form both 

homo- and hetero-dimers (34). Recent evidence suggests that dimerization of GPCRs can 

have an effect on both signaling and trafficking. Hetero-dimerization has been implicated 

in the trafficking of GABAB receptors from the ER to the plasma membrane. Hetero-

dimerization has also been implicated in the ability of certain taste receptors to recognize 

the sweet stimuli (35). Olfactory receptors have also been shown to require hetero-

dimerization for proper expression at the plasma membrane (36). Thus, 

heterodimerization seems to regulate both signaling and trafficking of GPCRs. 

 For the past several years evidence for G-protein independent signaling has also 

emerged (37). Apart from β-arrestins that can act as signaling mediators on endosomes 

with Class B GPCRs, the role of other proteins have also been implicated in G-protein 

independent signaling. SH-2 domain containing proteins have been shown to directly 

interact with GPCRs like the angiotensin AT1 receptor and B2AR mediating downstream 

signaling events (38-40). Some GPCRs have also been shown to interact with small GTP 

binding proteins like ARF- and Rho-GTPases (41). The interaction requires a NPXXY 

motif that is present at the end of the seventh trans-membrane domain. Many GPCRs like 

the β2AR have also been known to interact with PDZ domain proteins like Na+/H+ 

exchange regulatory factor (NHERF) and PSD-95 (42) mediating renal Na+/H+ 

exchange. Some GPCRs contain polyproline sites either on their third-intracellular loops 
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or cytoplasmic tails. These polyproline sites have been shown to interact with SH3 

domain, WW domain and EVH domain proteins (43). The metabotropic glutamate 

receptors (mGluRs) have been shown to interact with Homer family of EVH domain 

proteins through polyproline sites on their cytoplasmic tails (44). Additionally, evidence 

for G-protein independent signaling has emerged from the family of 7TM receptors 

called as frizzled. Secreted Wnt proteins regulate tissue polarity during development 

through the frizzled receptor (45). Although, frizzled can interact with G-proteins, most 

of its action have been documented as being through other proteins such as dishevelled, 

GSKβ-3 and β-catenin (46). Thus apart from the typical G-proteins that a GPCR can 

activate, these new protein interactions increase the complexity of the signaling pathways 

regulated by GPCRs and opens new avenues for GPCR research.        

 

1.1.3 GPCR structural motifs and interactions 

Most GPCRs have many sequence motifs in their amino acid sequence that 

enables binding of different adaptor proteins that recognize these sequences and are either 

involved in targeting GPCRs to different compartments or in endocytosis and recycling. 

Many proteins including GPCRs have consensus sequence motifs in their structure that 

are involved in sorting and trafficking. Sequence motifs that have been shown to be 

involved in the trafficking of GPCRs include: 1) Tyrosine based motifs (YXXΦ or 

NPXY), where Φ is a bulky hydrophobic residue (47); 2) di-leucine motifs that have been 

shown to be involved in cell surface transport, endocytosis and lysosomal targeting (48-

50); 3) Serine clusters that are involved in interactions with β-arrestins and regulate post-
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endocytic trafficking of GPCRs (19, 31, 51) and 4) the C-terminal type I PDZ ligands 

(S/T-X-Φ) (52).  

  Tyrosine based motifs (YXXΦ) were initially described in the regulation of 

trafficking and sorting of various receptors like the transferrin and mannose phosphate 

receptors. Apart from endocytosis, YXXΦ motifs have been implicated in lysosomal 

sorting (47). GPCRs like PAR-1 have been shown to require the YXXΦ motif for 

internalization as well as targeting to lysosomes for degradation (53). Additionally, 

tyrosine-based motifs on several GPCRs have been shown to interact with adaptor protein 

AP-2 and promote clathrin-dependent endocytosis (33, 54). NPXY motifs have also been 

implicated in the regulation of trafficking of GPCRs like Somatostatin receptor type 5 

(SST5) and the CB2 cannabinoid receptor (55-57).  

  Dileucine based motifs were first described in the regulation of trafficking of the 

CD3 T cell antigen wherein the regulatory sequence was revealed as DKQTLL, where 

the dileucines were the most important residues (58). Since then many proteins including 

GPCRs have been shown to require dileucine-based motifs for their trafficking. Dileucine 

motifs have been shown to regulate trafficking of GPCRs like CXCR4, V2R and B2AR 

(48, 59, 60). Dileucine motifs, like tyrosine-based motifs, have been shown to interact 

with AP-2, to promote internalization (55, 61).   

  PDZ domains are conserved protein modules that mediate protein–protein 

interactions. The term ‘‘PDZ’’ is derived from the first letters in the names of the three 

proteins in which these modules were originally characterized: PSD-95, Dlg, and ZO-1 

(62). PDZ domains bind to the C-terminal tails of target proteins, and the binding 

preferences of a number of PDZ domains have been characterized. Truncation mutant 
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studies on the β2-Adrenergic receptor revealed a domain at the C-terminal end of the 

cytoplasmic tail that is involved in the recycling of receptors after agonist stimulated 

internalization and that this effect is abolished on deletion of that domain (63). The 

domain was identified as a Type I PDZ ligand that has the consensus sequence S/T-X-

Φ (S-serine/T-threonine, X-any amino acid, Φ-bulky hydrophobic residue). Apart from 

being involved in recycling of receptors these PDZ domain proteins have been shown to 

act as scaffolding proteins for signaling complexes and in mediating protein-protein 

interactions (62). A recent study on the Endothelin ETA receptor has also revealed the 

presence of internal PDZ binding domains that are different as compared to the C-

terminal end PDZ binding domains (64). The proteins that bind to these PDZ ligands on 

GPCRs, apart from containing the PDZ domain also have additional functional domains 

that allow for multiple interactions.  

 Previous studies have shown that β-arrestins interact with phosphorylated residues on 

GPCRs and mediate both internalization and post-endocytic trafficking (19). The affinity 

of β-arrestin interaction delineates two classes of GPCRs, class A and B, which 

determines the pattern of resensitization of the receptors (Figure 5). Clusters of serine 

residues on Class B GPCRs have previously been shown to mediate stable interactions 

with β-arrestin in an agonist-dependent manner (51). Although, recently a study with the 

β2AR receptor showed that cluster of serines can also regulate transient interactions with 

β-arrestin (65). In addition to these commonly found motifs, other motifs like clusters of 

acidic residues, NPFX motifs and ubiquitin have been identified as sorting signals. Thus 

these various motifs present on GPCRs play an important role in their sorting and 

therefore ultimately their fate in a physiological context.  
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1.1.4 GPCRs as drug targets 

  Due to their highly complex and variable structure and their ubiquitous and tissue 

specific expression, GPCRs are ideal drug targets. More than 50% of drug targets are 

GPCR based today and generate worldwide sales exceeding 50 billion dollars (66). Use 

of agonists or antagonists to promote or inhibit the activity of GPCRs has been a common 

practice for drug therapy in most major organ systems (67). The most common GPCR 

targets are involved either in cardiovascular disease or in the central nervous system. 

Antagonists against the angiotensin II AT1 receptor (Losartan) are used for treatment of 

hypertension and heart failure. Antagonists against the adrenergic receptor family are 

mainly used to treat prostrate disorders, hypertension, and airway disease. Antagonists of 

the dopamine D3 receptor have been used to treat schizophrenia.  

  Deorphanizing of many GPCRs has led to the discovery of various drug targets 

and their therapeutic uses (68). As GPCRs have tissue specific expression, it is a 

challenge to target a drug only to a particular tissue and minimize side-effects. Such a 

problem can be circumvented by selectively distributing drugs through tissue specific 

metabolic pathways or drugs that act on a particular tissue type only. Another problem 

arises with the fact that many GPCRs regulate different pathways in different tissue types 

and hence use of common targeting drugs can have varying effects on different tissues. 

Bioinformatics and molecular modeling approaches are important in understanding 

receptor-ligand interactions and their affect on activity of GPCRs (69). The human 

angiotensin AT1 receptor antagonist can bind with high affinity to the rat AT1 receptor 

but not a frog AT1 receptor. Mutagenesis studies revealed that several amino acids 

critical to antagonist binding were missing. Gain of function experiments in frogs 
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restored binding abilities of the antagonist to the frog AT1 receptor (70). Such inter-

species comparative approaches might also be useful in testing viability and development 

of new drugs.  

  Novel approaches towards designing new drug targets such as ligand-based 

modeling or combinatorial libraries need to be identified (71). Another novel method that 

has gained prominence in recent years is to base drug targets on the basal activity of 

GPCRs (72). This approach is relevant to this thesis project as in the second part, basal 

activity of the LPA1 receptor has been investigated in detail. Basal activity for many 

adrenergic and opioid GPCRs have been reported and in particular µ-opioid receptor 

(MOR) basal activity has been hypothesized as being responsible for narcotic tolerance 

and dependence (73, 74). The use of inverse agonist that inhibits basal activity are of 

utmost importance in generating new drug strategies for GPCRs (75).  

 

1.2 Lysophosphatidic Acid (LPA) and LPA Receptors 

1.2.1 LPA: A bioactive molecule 

 Lysophosphatidic acid (LPA) (1-acyl-2-sn-glycerol-3-phosphate) is a naturally 

occurring, simple phospholipid abundant in serum (76). LPA had long been known as an 

intermediate in the lipid biosynthetic pathway and only in the past decade has been 

shown to be a bioactive, growth factor-like phospholipid (77). It is known to mediate a 

variety a cellular responses like cell proliferation (77), cell survival (78), aggregation of 

platelets (79), wound healing, smooth muscle contraction (80), cell invasion (81) and 

cytoskeletal reorganization (82). Although LPA seems to have growth factor like effects, 

it  can also cause necrosis and apoptosis in some cases (83, 84). LPA has also been 
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implicated in embryonic development of vertebrae, cardiovascular and nervous systems 

(85, 86). As in the case of normal processes LPA has also been implicated in many 

abnormal processes such as cancer, atherosclerosis, airway disease and obesity (87-90), 

which will be discussed in the next section.    

LPA is found in serum bound to albumin and gelsolin in physiologically relevant 

concentrations (91, 92). LPA is also found in other bodily fluids like saliva, follicular 

fluid, malignant effusions and mildly-oxidized LDL (90, 93). High concentrations of 

LPA (up to 25µM) are found in serum. LPA molecular species found in serum are mostly 

palmitoyl or oleoyl-LPA (94-96) of which the oleoyl species of LPA is the most potent 

activator of LPA receptors (97). Previous studies have also found that unsaturated LPA to 

be more potent than the saturated form such that the unsaturated form can induce smooth 

muscle cell proliferation and differentiation whereas the saturated form cannot (98, 99). 

Although LPA can be generated through biochemical pathways in the cell, most of the 

LPA generated by platelets or adipocytes in serum is through the action of various 

enzymes such as lipases or kinases that cleave relatively complex phospholipids or 

phosphorylate monoacylglycerol (MAG) to give rise to LPA (Figure 6). 

LPA can be generated by the action of phospholipases A1 (PLA1) and A2 (PLA2) 

by cleavage of a single fatty acyl chain from phosphatidic acid (PA). PLA1 removes the 

acyl chain from the sn-1 position generating unsaturated forms of LPA, whereas PLA2 

cleaves the acyl chain in the sn-2 position generating saturated forms of LPA (100, 101). 

Although PLA2 can exist intracellularly (iPLA2) or extracellularly (sPLA2), sPLA2 

cannot act on phosphatidic acid as PA is mostly found in membranes. Only upon cell 

membrane disruption can sPLA2 act upon PA to generate LPA.    
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Figure 5. Structure of LPA. Lysophosphatidic acid (LPA) has a single fatty acyl chain 
attached to the glycerol backbone at either the sn-1 or sn-2 positions. A phosphate group 
is attached at the sn-3 position. LPA can be generated by the action of various enzymes 
like phospholipases PLA1 and PLA2 and lysophospholipases like ATX/Lyso-PLD. 
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Therefore the discovery of yet another enzyme that could generate LPA from 

lysophospholipids was important in understanding LPA production in the external milieu.  

 LPA was also found to be generated from lysophosphatidylcholine (LPC) by the 

action of an enzyme called Lysophospholipase D (LysoPLD). This enzyme was later 

identified as the tumor promoting factor Autotaxin (102, 103). LysoPLD cleaves the 

choline head group from LPC and gives rise to LPA (Figure 6). 

Autotaxin (ATX) was originally identified as an autocrine motility factor and is a 

transmembrane protein that is proteolytically cleaved to give rise to a soluble form of 

ATX/LysoPLD. The soluble form of ATX/lysoPLD can give rise to LPA locally and 

promote LPA-dependent tumor migration as the metastatic capability of breast cancer 

correlates with ATX/LysoPLD levels (104). Finally, a recently discovered mitochondrial 

enzyme acyl glycerol kinase (AGK) has been shown to generate LPA by phosphorylating 

MAG (105). Total LPA levels are also controlled by its metabolism. LPA can be broken 

down by various enzymes into different products. LPA can be dephosphorylated by lipid 

phosphate phosphatases (LPPs) to monoacylglycerol (MAG). LPPs are a major source of 

LPA “inactivators” and have been implicated in tumor amelioration, as expression of 

LPPs in ovarian cancer cells decreases colony formation and tumor growth (106). LPA 

can be converted to PA by LPA acyltransferases (LPAAT) by adding an acyl chain to 

either the sn-1 or sn-2 position. LPA generation and metabolism are not the only ways of 

modulating the effects of LPA. LPA, although water soluble, is also hydrophobic and 

hence can interact with other lipids and proteins in fluids or within cells. As mentioned  
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Figure 6. Biochemical pathways of LPA synthesis and degradation. PA, phosphatidic 
acid, LPX, lysophospholipid representing LPE, LPS or LPC, MAG, monoacylglycerol, 
PG, phosphatidylglycerol, PA–PLA1&2, PA-specific PLA1&2, Lyso-PLD, 
lysophospholipase D, LPP, lipid phosphate phosphatase, LPAAT, LPA acyltransferase, 
LPA–LPL, LPA-lysophospholipase, GPAT, glycerophosphate acyltransferase. 
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before, LPA can bind to serum albumin and gelsolin in nanomolar concentrations. 

Interestingly, albumin is used in most experiments as a carrier for LPA.  Gelsolin can 

also bind to actin filaments and hence during local injury when platelets release LPA, 

gelsolin at the same time binds to actin filaments from damaged cells and therefore 

allows LPA to exert its effects (107). The liver fatty acid binding protein has also been 

identified as an intracellular carrier of LPA (108).  

Therefore, knowledge of the processes involved in the metabolism of LPA itself 

can help in generating several therapeutic targets to inhibit the effects of LPA. As 

mentioned before, ATX, an LPA generating enzyme is a major tumor cell motility factor 

and hence is a candidate for pharmacological therapy. Additionally, LPP’s have been 

shown to inhibit ovarian cancer growth and hence is a target for pharmacological therapy 

in terms of increasing the activity of LPP’s. 

 

1.2.2 LPA Receptors 

 Although LPA has many bioactive effects, there was considerable evidence that 

LPA mediated its effects through a G-protein coupled receptor pathway (109). The first 

LPA receptor gene was identified in the ventricular zone in the cerebral cortex, termed as 

ventricular zone gene-1 (vzg-1) (110). Based on amino acid similarity and ligand 

specificity two other receptor genes belonging to this family were identified and termed 

endothelial differentiation gene 2 and 7 (EDG-4 and EDG-7), which also included the 

receptors for sphingosine-1-phosphate, another lysophospholipid (111, 112). The three 

originally identified receptors were termed as LPA1, LPA2 and LPA3 (EDG-2, EDG-4 

and EDG-7). Interestingly, a mutant LPA2 receptor was discovered with a frameshift 
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mutation isolated from an ovarian tumor cell line (113). This frameshift mutation (G 

deletion) results in a mutant LPA2 receptor that has four replaced and 31 additional amino 

acids compared to the normal LPA2 receptor. It is known that C-terminal tails of GPCRs 

are critical for a variety of interactions that regulate multiple processes and hence extra 

amino acids in the LPA2 tail might lead to abnormal interactions and abnormal 

phenotypes (114). Additionally, several variants of the LPA2 gene are observed in various 

cancer cell lines (111). Recently, a fourth human LPA receptor, LPA4/GPR23/P2Y9, was 

cloned (115). The LPA4 receptor has about 24% amino acid similarity to other LPA 

receptor family members and is evolutionary distant from them. LPA4 is more related to 

the nucleotide receptor P2Y family and interestingly the enzyme autotoxin generates 

ligands for both receptor families (116). Additionally, a fifth LPA receptor, 

LPA5/GPR92, was recently cloned, with a ~35% homology to LPA4 (117). These 

receptors have varying expression patterns in different tissues. The LPA1 receptor is the 

most widely expressed LPA receptor and is expressed in adult human organs like brain, 

heart, colon, small intestine, placenta, prostate, ovary, pancreas, testis and spleen, and 

lower expression levels in skeletal muscle and kidney (111, 116). Interestingly, LPA1 

receptor expression was completely absent from the liver. Consequently, many LPA1 null 

cells derived from the liver, like RH7777 rat hepatoma cells and HepG2 cells have been 

used in elucidating receptor signaling pathways in response to LPA (118). The LPA1 

expression pattern is very similar in both humans and mice (116). The LPA1 receptor is 

also differentially expressed in the brain both during development of the mouse embryo 

and after birth (119, 120). Unlike the LPA1 receptor, the LPA2 and LPA3 receptors have a 

more restricted expression pattern. LPA2 has abundant expression in testis and leukocytes 
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in humans and very low expression in pancreas, thymus, spleen and prostrate and no 

expression in adult liver, brain, heart, lung, kidney and ovary (111, 113, 120). Human 

LPA3 expression is strong in heart, prostrate, pancreas and testis and moderate in lung 

and ovary (112, 118). Human LPA4 is apparently weakly expressed in most tissues, 

except the ovary (115). Just like LPA4, LPA5 too has very low levels of expression in 

most tissues including brain and small intestine (117). 

The LPA receptors being GPCRs, signal through heterotrimeric G-proteins and 

have been shown to activate different G-proteins (88, 116). LPA1 and LPA2 have been 

shown to activate Gαi, Gαq and Gα12/13, whereas LPA3 can activate only Gαi and Gαq 

but not Gα12/13 (88, 116). Activation of Gαi and Gβγ and subsequently the MAPK/ERK 

pathway leads to cell proliferation and activation of the Pi3K-AKT pathway, promoting 

cell survival. Gαq activation leads to phospholipase C activation, which in turn causes 

Ca++ mobilization and PKC activation. Lastly, Gα12/13 mediates LPA-dependent Rho-

GTPase activation and subsequent changes in the actin cytoskeleton (Figure 8). 

Additionally, the LPA1 receptor has been shown to activate Rac-GTPase through a Giβγ-

PI3K pathway, which requires a Rac-GEF, TIAM1 (121, 122). In contrast, LPA4 and 

LPA5, which have more resemblance to nucleotide P2Y receptors, activate Gαs and 

adenylyl cyclase (115, 117). The LPA1 and LPA2 receptors have a PDZ-binding domain 

at their C-terminal ends, which have been shown to be required for interaction with PDZ-

RhoGEF and Leukemia associated Rho GEF (LARG), both GEFs for Rho-GTPase (123). 

Both PDZ Rho-GEF and LARG apart from being GEFs for Rho also have a PDZ domain 

through which they interact with the LPA1 and LPA2 receptors.  
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Figure 7. G-protein signaling pathways activated by LPA. LPA signals through G-
protein-coupled receptors via at least three distinct classes of heterotrimeric G proteins — 
Gq, Gi and G12/13 — leading to activation of multiple downstream effector pathways. 
Gq and/or Gi -mediated activation of phospholipase C (PLC), which leads to the 
hydrolysis of phosphatidyl inositol bisphosphate (PIP2), with consequent calcium 
mobilization and protein kinase C (PKC) activation; Gi-mediated activation of the RAS–
ERK pathway, leading to cell proliferation; Gi-mediated activation of the PI3K–AKT 
(cell survival), which suppresses apoptosis; and G12/13-mediated activation of the RHO 
GTPases via specific exchange factors, RHOGEF, which leads to cytoskeletal remodeling 
(contraction and spreading), shape changes and cell migration. 
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Therefore, these PDZ-binding domains on LPA1 and LPA2 are required for 

Gα12/13 activation leading to Rho activation and actin cytoskeleton turnover. In contrast, 

LPA3 lacks this PDZ-binding domain and does not activate Gα12/13. 

Interestingly LPA1 has been implicated in inducing cell motility of multiple 

cancer cell lines, which is mediated by the tumor cell motility-stimulating factor 

autotaxin/lyso-PLD by generation of LPA in the local environment (124). This correlates 

with the fact that LPA1 has the ability to activate both Rac and Rho-GTPase leading to 

actin cytoskeleton turnover and regulate of cell migration. LPA2, in addition, has also 

been shown to interact with PDZ domain proteins like MAGI-3, which regulate its ability 

to activate both ERK and RhoA (125). Additionally, monocytes and macrophages 

express both LPA1 and LPA2 receptors (126) and both these receptors could regulate 

migration of these cells. Receptor knock-out studies in mice have revealed an important 

role for LPA receptors. The LPA1 receptor null mice, although not completely lethal, 

show certain birth defects like decreased olfaction (127). Embryonic fibroblasts derived 

from LPA1 null mice show decreased cell migration, rounding and proliferation, which is 

consistent with the hypothesis that cells expressing LPA1 confer migratory potential to 

cells expressing them. Most of the abnormal phenotypes observed in the LPA1 null mice 

were limited and not completely present but LPA1 and LPA2 double null mice had more 

severe phenotypes suggesting that LPA-dependent processes are redundant (128). A 

recent study showed that in LPA3 null mice litter size was significantly reduced due to 

improper implantation and spacing leading to delayed embryonic development and 
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lethality (129). This study adds to the increasing repertoire of processes regulated by LPA 

receptors.      

Although much is known about the expression patterns and signaling pathways of 

the LPA1 receptor, the physiological context of these phenomenon are not completely 

understood. Insight in to many of the processes regulated by LPA receptors was derived 

from studies using receptor agonists and antagonists. Most of these agents have not been 

used in therapeutic studies due to their limited potency. Structural studies have revealed 

the importance of a single amino acid, glutamine, in the ligand recognition of the LPA 

versus S1P receptors (130). In addition to G-protein mediated effects of LPA, a recent 

study showed that the nuclear receptor PPAR-γ can also be activated by LPA (131). 

Another field that has not been extensively studied is LPA1 receptor trafficking. Very few 

studies have elucidated the trafficking patterns of LPA1 receptors, namely Murph et al., 

2003 and Urs et al., 2005. A recent study also showed that LPA receptors can form both 

homo- and hetero-dimers, which could have an impact on the signaling patterns in 

response to LPA (132). Further investigations related to trafficking of LPA1 receptors is 

described in this thesis dissertation.   

 

1.3 Clinical significance of LPA and its cognate receptors  
 
1.3.1 Cancer and Metastasis 
 
 The six alterations to cell physiology that represent the hallmarks of cancer are 

self-sufficiency in growth signals, insensitivity to growth inhibitory signals, evasion of 

apoptosis, unlimited growth potential, sustained angiogenesis and tissue invasion and 

metastasis (133). Initial studies with LPA clearly showed that it could induce cell motility 
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and invasiveness of various cell lines (81, 134, 135). A study with ovarian cancer patients 

revealed that the accumulated ascites fluid in those patients was enriched in a growth 

factor that stimulated growth of ovarian cancer cells and this factor was later on identified 

as LPA (136-138). After the discovery of cognate LPA GPCRs studies revealed that 

ovarian cancer cells had elevated expression of LPA2 and LPA3 receptors but not LPA1 

receptors(138). In fact LPA1 was found to have an inhibitory effect on the growth of the 

ovarian cancer cells as its over-expression caused apoptosis of those cells (139). LPA can 

also induce anchorage-dependent and anchorage-independent growth of ovarian cancer 

cells as well as proliferation by activating the MAPK activity (140). Expectedly, LPA 

generating enzymes like ATX are up-regulated and LPA metabolizing enzymes like LPPs 

are down-regulated in ovarian cancer cells (141). LPA and other lysolipids have been 

shown to increase IL-8 expression in ovarian cancer cells affecting angiogenesis (142). 

Thus multiple signals at the same time can together alter cell physiology causing 

malignant transformation.  

LPA has also been implicated in colon cancer. LPA2 receptors mediate mitogenic 

signals in human colon cancer cells whereas LPA1 enhances the metastatic potential of 

colon cancer cells (143, 144). Additionally, LPA mediates colon cancer proliferation 

through the β-catenin pathway via the LPA2 and LPA3 receptor (145). LPA has also been 

implicated in the survival, proliferation and migration of prostate cancer cells wherein the 

effects are mediated through the LPA1 receptor (146). LPA generating enzymes, like acyl 

glycerol kinase (AGK), in prostate cancer cells can also augment these effects through 

both epidermal growth factor receptor (EGFR) trans-activation and GPCR mediated 

activation. Expression of AGK in PC-3 prostate cancer cells enhanced cell proliferation 
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and migration in response to LPA (105). Additionally, the receptors that are involved in 

prostate tumor progression activate and interact with different proteins, thus increasing 

the complexity of these signaling pathways (147). Similarly, in breast cancer also LPA1 

expression is critical for mediating metastatic potential to cells (148). There is evidence 

suggesting that LPA supports the progression of ovarian and breast cancer metastasis to 

the bone (149). Additionally, this effect is mediated through the LPA1 receptor as 

silencing of the receptor reduced bone destruction and metastasis (150). Interestingly, a 

study revealed that phorbol 12-myristate 13-acetate (PMA) could induce the production 

of LPA in ovarian and cervical cancer cells but not in breast cancer cells (151). In this 

thesis, studies done on the effects of PMA on LPA1 receptor trafficking will be described 

and discussed.   

 

1.3.2 Cardiovascular disease 

 Atherosclerosis is a disease state wherein any type of injury/insult or LDL 

particles causes lesions in the endothelium layer, which attract platelets and monocyte-

derived macrophages into the intima (152). These macrophages can take up the oxidized 

LDL and swell up forming foam cells that occupy up to 6 layers of the intima of the 

artery. Rupture of these foam cells can then release lipids and oxidized LDL stored in the 

foam cells causing more macrophages and platelets to accumulate at the neo-intima. This 

results in the formation of an atherosclerotic plaque that blocks the artery and 

subsequently blocks flow of blood causing myocardial infarction (152). LPA has been 

implicated in cardiovascular disease especially in formation of atherosclerotic plaques 

(153). LPA was found to be enriched in mildly-oxidized LDL (mox-LDL) and that it 
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activated platelets and endothelial cells in the surrounding environment (90). 

Additionally, LPA was also found to be enriched in the lipid core of the neo-intima and 

that it caused the accumulation of platelets and macrophages (90, 154). It was 

hypothesized that upon rupture of the neo-intima, the release of mox LDL and LPA could 

result in accumulation of additional platelets and macrophages in the lesion leading to 

blockage of the artery. Previous studies have shown that monocyte-derived macrophages 

express both the LPA1 and LPA2 receptors (155) and it is possible that the presence of 

LPA could act as a chemo-attractant to these macrophages. Additionally, the LPA species 

found in the neo-intima are predominantly of the acyl form (18:0) and could have varying 

platelet activating potential (156). Interestingly, effects of LPA present in the neo-intima, 

like platelet shape change and aggregation of platelets and macrophages, were blocked by 

LPA receptor antagonists (156). Although LPA GPCRs might have a role in the 

formation of the atherosclerotic plaque, increasing evidence points towards PPAR-γ as a 

more important player in the formation of a neo-intima (153). Previous studies had shown 

that the major LPA species found in the neo-intima were the acyl form (18:0) and that its 

activation potential is variable. However, recent studies revealed that the unsaturated 

alkyl forms but not the acyl forms of LPA promoted neo-intima formation. It was 

proposed that this effect was not through the LPA GPCRs but instead was through 

activated PPAR-γ and that it was responsible for vascular smooth muscle (VSMC) 

differentiation and neo-intima formation (98, 99, 157). Therefore LPA might have a dual 

role in the formation of neo-intima through PPAR-γ and atherosclerotic plaque formation 

through the EDG/LPA receptors. Inhibitors of the LPA GPCRs had a modest effect on 

neo-intima formation but inhibitors of PPAR-γ had a more robust inhibitory effect on 
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neo-intima formation (157). Thus further studies, both with LPA GPCR and PPAR-γ, 

need to be done to gain insight into this dual role for LPA in atherosclerosis.     

 

1.3.3 LPA in the nervous system 

 Initial studies in the field of LPA were done in the nervous system leading to the 

discovery of the first LPA receptor (LPA1/VZG-1/EDG-2). These studies showed that 

LPA could induce neurite retraction (158). The presence of LPA receptors in the nervous 

system is evidence enough that LPA might play an important role. LPA1 and LPA2 are 

the major receptors expressed in the nervous system. Studies with LPA1 and LPA2 null 

mice have revealed a requirement for LPA signaling as these null mice exhibit abnormal 

phenotypes like cranial deformities and impaired suckling behavior (127, 159). LPA1 null 

mice also seem to have decreased serotonin levels, although there were no behavioral 

changes observed (128). A recent study revealed a new role for LPA signaling in 

neuropathic pain (160). Injury or treatment with LPA caused hyperalgesia and allodynia 

through the Rho pathway and these effects were absent in the LPA1 null mice (159). 

Additionally, LPA has been implicated in the myelination of nerves. LPA1 receptors have 

been found in mature oligodendrocytes as well as schwann cells (161, 162). 

A recent study has also indicated a role for LPA signaling in psychiatric disorders like 

schizophrenia (163). The time-dependent expression of LPA receptors in the brain 

indicates a developmental role for LPA signaling. LPA causes thickening and abnormal 

folding of the cortical wall, which could be attributed to LPA-induced mitosis and lack of 

apoptosis (164). Although LPA receptor knockout studies have revealed a role for LPA 

signaling in the nervous system, most of the phenotypes are not lethal if the mice survive 
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and hence indicate redundancy in signaling, which is compensated by some other 

pathways (165). It is possible that a combination of lysophospholipid pathways including 

that of the S1P receptors along with the LPA receptors regulate the different functions in 

the nervous system.  

 

1.3.4 LPA and Obesity 

 Obesity is defined as an energy storage disorder where energy imbalance causes 

weight gain, with excess calories stored as triglycerides in adipose tissue (166). 

Prevalence of obesity also has a strong correlation with type 2 diabetes and 

cardiovascular disease (167). Adipocytes are the major cell type involved in obesity and 

have been shown to be endocrine cells that release various cytokines as well as autocrine 

and paracrine factors (168). Adipocytes have been shown to generate LPA through the 

secretion and action of ATX/Lyso-PLD (89, 169). These studies demonstrated that LPA 

induced pre-adipocyte differentiation and cell proliferation and additionally, genetically 

obese diabetic mice seemed to overexpress ATX in them. In normal weighing adults the 

ratio of pre-adipocytes to adipocytes is a tightly regulated process that might be disrupted 

due to excessive LPA signaling. Surprisingly, a recent study also showed that the LPA 

induced down-regulation of PPAR-γ2 expression through the action of the LPA1 receptor 

and reduced triglyceride accumulation (170). This study also showed that although LPA1 

null mice were leaner than wild-type mice, they had more pre-adipocyte content. ATX 

expression is highly up-regulated in newly differentiated adipocytes with a concurrent 

increase in the release of LPA. Thus, taken together, these studies indicate that LPA has 

an anti-adipogenic activity on pre-adipocytes but has a proliferative and differentiating 
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effect on pre-adipocytes when generated by adipocytes through ATX/Lyso-PLD activity. 

Other factors such as Insulin and IGF-1 also contribute to the differentiation of pre-

adipocytes to adipocytes. Therefore, further studies might provide a link between type-2 

diabetes and obesity and the role of LPA signaling.     

In the following chapters the studies on the trafficking of the LPA1 receptor will 

be described and discussed.   
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PART I: 

A REQUIREMENT FOR MEMBRANE CHOLESTEROL IN THE β-ARRESTIN- AND 
CLATHRIN-DEPENDENT ENDOCYTOSIS OF LPA1 LYSOPHOSPHATIDIC ACID 
RECEPTORS  
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CHAPTER 2 
 

INTRODUCTION 
 

 
 

Lysophosphatidic acid (LPA, 1-acyl-2-lyso-sn-glycero-3- phosphate) is an 

abundant serum mitogen that evokes growth factor-like responses in many cell types 

through activation of G-protein-coupled receptors (GPCR) (86). LPA signaling affects a 

variety of cellular functions including: growth stimulation (cell proliferation and cell 

survival) (171-173), induction of cytoskeletal rearrangements via Rho GTPases (174), 

stimulation of serum-responsive genes (175), neurite retraction (158), promotion of tumor 

cell migration/invasion (176) and the secretion of peptide growth factors (142, 177, 178).  

Most of the effects of LPA are mediated through the activation of three members 

of the endothelial differentiation gene superfamily of receptors: LPA1, LPA2 and LPA3 

(86, 179). Upon LPA binding, both LPA1 and LPA2 activate the Gi, Gq and G12/13 

families of heterotrimeric G proteins; LPA3 only activates Gi and Gq (180). In addition to 

these well characterized GPCRs, LPA also stimulates the orphan receptor, GPR23/LPA4 

(115) and the non-GPCR target, peroxisome proliferator-activated receptor γ (131). 

Given the complexity of cellular responses to LPA signaling and the potential role of 

LPA receptor subtypes in various cancers (88), it is important to understand the 

mechanisms that regulate the activity of individual LPA receptors.  

Upon agonist stimulation, most GPCRs are rapidly internalized into cells through 

a variety of different endocytic pathways. This facilitates either receptor down-regulation 

or receptor resensitization (13). Agonist stimulation usually leads to the rapid 

phosphorylation of serine/threonine residues located within cytoplasmically exposed 
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regions of GPCRs (1). This subsequently induces the binding of β-arrestin proteins, 

which results in signal attenuation and often targets the GPCR to clathrin-coated pits for 

endocytosis (181). Internalized GPCRs transit through the endosomal system and are 

either sorted to lysosomes for degradation or become dephosphorylated by membrane-

associated phosphatases and are recycled back to the plasma membrane (1). In addition to 

clathrin-mediated endocytosis, many GPCRs utilize a variety of clathrin-independent 

internalization mechanisms including cholesterol-dependent pathways such as caveolae 

(25). Also, β- arrestins are not universally required for GPCR endocytosis as shown for 

the thrombin receptor, PAR1, whose association with β-arrestins is required for signal 

attenuation but not for its endocytosis (182). Thus, the mechanisms that regulate both 

signal attenuation and receptor endocytosis can vary from one GPCR to another.  

We have previously shown that LPA1 is probably internalized by clathrin-

dependent endocytosis as dominant negative mutants of dynamin 2 (K44A) and Rab 5 

(S34N), which regulate clathrin-dependent trafficking, strongly inhibited LPA1 

endocytosis (183). However, a recent study showed that LPA stimulation of the 

phosphoinositide 3-kinase (PI3-K)/Akt pathway was dependent upon membrane 

cholesterol (184) suggesting a positive role for cholesterol-rich plasma membrane 

microdomains in LPA signaling. As cholesterol enriched microdomains, such as 

caveolae, can also mediate receptor endocytosis, it is not clear what the relationship is 

between LPA signaling from cholesterol-rich microdomains and the endocytosis of LPA 

receptors. To address this question and to gain a better understanding about the regulation 

of LPA receptors, we investigated the role of membrane cholesterol, β- arrestins and 

clathrin in the signaling and endocytosis of the ubiquitously-expressed LPA1 receptor.  
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CHAPTER 3 

MATERIALS AND METHODS 

 

3.1 Antibodies and reagents 

Lysophosphatidic acid (1-oleoyl-2-hydroxy-sn-glycero-3-phosphate; LPA) was 

purchased from Avanti Polar Lipids (Alabaster, AL). Isoproterenol and cytochalasin D 

was obtained from Sigma Chemical Co. (St Louis, MO) and carbachol from Fluka 

Chemika-Biochemika. FLAG-tagged LPA1 receptors were detected with mouse anti-

FLAG antibodies (Sigma, St Louis, MO); HA-tagged β2AR and HA-tagged M1 

muscarinic acetylcholine receptor (mAChR) were detected with mouse anti-HA 

antibodies (Covance, Berkeley, CA). Alexa 488- labeled transferrin (Alexa 488-Tfn), 

Alexa 594- and Alexa 488- conjugated goat anti-mouse were purchased from Molecular 

Probes (Eugene, OR). Monoclonal antibodies to clathrin heavy chain and monoclonal 

anti-actin antibodies were purchased from BD Transduction labs (San Jose, CA) and 

Santa Cruz Biotechnology (Santa Cruz, CA), respectively. Mouse anti-AP2 antibodies 

were purchased from Affinity Bioreagents (Golden, CO). FITC-labeled anti-CD59 was 

obtained from Chemicon (Temecula, CA). Methyl-β- cyclodextrin and water-soluble 

cholesterol complexes were purchased from Sigma. myo-[3H]inositol was purchased 

from American Radiolabeled Chemicals (St Louis, MO).  

 

3.2 Cell culture and DNA transfection  

HeLa cells stably expressing the LPA1 receptor (termed LPA1/HeLa cells), native HeLa 

cells, wild-type (WT) mouse embryo fibroblasts (MEFs) and β-arrestin 1/2 KO MEF 
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cells were maintained in Dulbecco’s modified Eagle’s medium (DMEM) supplemented 

with 10% fetal bovine serum, 100 IU/ml penicillin, 100 µg/ml streptomycin (Media Tech, 

Herndon, VA) and 1 mM sodium pyruvate (Biosource International, Camarillo, CA) at 

37°C with 5% CO2. Cells were grown on glass coverslips (for immunolocalization) and 

transfected in six-well dishes, or were grown in 24-well dishes (for myo-[3H]inositol 

labeling) using Lipofectin or Lipofectamine 2000 (Invitrogen, Carlsbad, CA) according 

to manufacturer’s directions. Plasmids encoding HA-tagged β2AR, β- arrestin 1-GFP, β-

arrestin-2-GFP, HA-tagged M1 mAchR were transiently transfected at 1.0 µg/well (in 

six-well plates) and have been previously described (Paing et al., 2002; Scott et al., 

2002).  

 

3.3 siRNA-mediated reduction of clathrin  

siRNA oligonucleotides to clathrin were purchased from Dharmacon (Lafayette, CO) and 

have been described previously (185). LPA1/HeLa cells were transiently transfected with 

300 pmol (10 cm dish) or 100 pmol (24-well plate) of siRNA using Lipofectamine 2000 

(Invitrogen, Carlsbad, CA). The transfection medium was replaced with complete 

medium (without penicillin/streptomycin) 5 hours later and the cells were incubated for 

16 hours. The cells were transfected a second time as above and the medium was then 

replaced with serum-free medium (SFM) and incubated for an additional 16 hours before 

experimentation.  
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3.4 Indirect immunofluorescence  

Cells were treated as described in the figure legends, 24-48 hours after transfection. Cells 

were then fixed in 2% formaldehyde in phosphate buffered saline (PBS) for 10 minutes 

and rinsed with 10% fetal bovine serum (FBS) containing 0.02% azide in PBS (PBS-

serum). Fixed cells were incubated with primary antibodies diluted in PBS-serum 

containing 0.2% saponin for 45 minutes and then washed (three times, 5 minutes each) 

with PBS-serum. The cells were then incubated in fluorescently labeled secondary 

antibodies diluted in PBS-serum containing 0.2% saponin for 45 minutes, washed three 

times with PBS-serum, washed once with PBS and mounted on glass slides as previously 

described (186). For Alexa 594-Tfn and FITC-labeled anti-CD59 internalization, 

LPA1/HeLa cells were briefly rinsed three times with 0.5% bovine serum albumin (BSA) 

in SFM and incubated in the same medium for 30 minutes at 37°C. The cells were then 

incubated with Alexa 594- conjugated human transferrin (50 µg/ml) or FITC-conjugated 

anti- CD59 (1 µg/ml) for 30 minutes at 37°C in the presence or absence of 10 µM LPA. 

Antibodies bound to the cell surface were removed by rinsing the cells with 0.5% acetic 

acid, 0.5 M NaCl, pH 3.0 solution (for Alexa 488-Tfn) or 100 mM glycine, 20 mM 

magnesium acetate, 50 mM KCl, pH 2.2 (for FITC anti-CD59) (187). Cells were rinsed 

in complete medium, fixed and processed for fluorescence microscopy. For assessing 

uptake in the presence of methyl-β-cyclodextrin (5 mM) or nystatin (50 µg/ml), cells 

were pretreated with DMEM supplemented with 0.5% BSA, with or without drugs, for 60 

minutes prior to antibody and/or LPA addition. All images were acquired using an 

Olympus BX40 epifluorescence microscope equipped with a 60X Planapo lens and 

photomicrographs were prepared using an Olympus MagnaFire SP digital camera 
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(Olympus America, Melville, NY). Images were processed with Adobe Photoshop 6.0 

software. 

 

3.5 Quantification of LPA1 colocalization with internalized Alexa- Tfn  

Stably-transfected LPA1/HeLa cells or transiently-transfected HeLa cells expressing M1 

mAChRs were grown on glass coverslips and treated with MβCD and/or water-soluble 

cholesterol as described in the figure legends. The cells were then incubated with 50 

µg/ml Alexa 594-Tfn for 30 minutes in the presence or absence of 10 µM LPA or 1 mM 

carbachol, respectively. The cells were rinsed with a mild acid wash as described above, 

fixed with 2% formaldehyde in PBS and processed for immunofluorescence localization 

of LPA1 using M1 mouse anti-FLAG IgG or M1 mAChR using mouse anti-HA IgG 

followed by Cy2 secondary antibodies. The extent of LPA1 or M1 co-localization with 

internalized Alexa 594-Tfn was determined by quantifying the extent of pixel co-

localization of GPCR staining with Alexa 594-Tfn fluorescence using Metamorph 

Imaging software (Universal Imaging, West Chester, PA) as described (186, 188). The 

background was subtracted from unprocessed images and the percentage of GPCR pixels 

that overlapped with Alexa-Tfn pixels was measured. The data is presented as the 

mean±s.e.m. of measurements from 20 cells per sample from a representative experiment 

that was performed three independent times with similar results.  

 

3.6 Immunoblotting  

Following 72 hours of siRNA treatment, cells were solubilized by addition of lysis buffer 

(1% NP-40, 1% sodium deoxycholate, 0.1% SDS, 0.15 M NaCl, 0.01 M sodium 



42

phosphate pH 7.2, 2 mM EDTA, 50 mM NaF, 0.2 M sodium orthovanadate, 0.02% azide, 

100 µg/ml leupeptin and 0.1 mM PMSF) and incubated on ice for 60 minutes. The 

samples (12 µg protein per lane) were then separated by 10% SDS-PAGE and transferred 

to nitrocellulose. Clathrin heavy chain was detected using mouse anti-clathrin antibodies 

and actin was detected using monoclonal anti-actin antibodies. The binding of primary 

antibodies was detected by using an enhanced chemiluminiscence detection kit 

(Amersham Biosciences, Piscataway, NJ).  

 

3.7 Phosphoinositide hydrolysis  

LPA1/HeLa cells or mouse embryo fibroblasts derived from wild-type or β-arrestin 1/2 

null mice were plated at a density of 4.0X104 cells/well into 24-well plates and 

transfected with plasmids encoding wild-type LPA1 or M1 mAChRs alone or in 

combination with plasmids encoding wild-type β-arrestin 2 using Lipofectamine 2000. 

Transient transfection of plasmids encoding M1 mAChRs was performed by using 

Lipofectin reagent. At 24 hours post-transfection, cells were labeled overnight with myo-

[3H]inositol in inositol- and serum-free medium, treated as described in the figure 

legends and then processed for analysis of phosphoinositide hydrolysis by anion 

exchange chromatography as described (182).  

 

3.8 Triton X-100 extraction of cells  

LPA1/HeLa cells were plated onto glass coverslips in 35 mm dishes at a density of 

0.2x106 cells per plate. After allowing cells to attach for 24 hours, the medium was 

changed to serum-free medium and the cells were incubated overnight (~16 hours). The 



43

following day, the cells were treated as described in the figure legends and subsequently 

incubated with ice-cold 1% Triton X-100 in PBS on ice for 3 minutes prior to fixation 

with ice-cold 2% formaldehyde in PBS. LPA1 or was localized using indirect 

immunofluorescence microscopy. To monitor the fate of surface LPA1, LPA1/HeLa cells 

were incubated on ice with mouse anti-FLAG antibodies for 30 minutes after LPA 

treatment to label only surface LPA1. These cells were then extracted with 1% Triton X-

100, fixed and processed for immunofluorescence localization as described above. 

Relative receptor expression was quantified by measuring receptor pixel intensity using 

MetaMorph imaging software and was normalized to DNA content, labeled with Hoescht 

dye.  

 

3.9 Whole-cell ELISA quantification of surface LPA1  

LPA1/HeLa cells were plated in 24-well dishes (Falcon) at a density of 0.4x105 cells per 

well and grown overnight. Cells were then transiently transfected with no siRNA or with 

100 pmol/well of clathrin-specific siRNA (185) using Lipofectamine 2000 reagent 

according to the manufacturer’s instructions (Invitrogen, Carlsbad, CA). After 24 hours, 

the cells were again transfected with 100 pmol/well of clathrin-specific siRNA or no 

siRNA. 24 hours later, the cells were incubated in the presence or absence of 10 µM LPA 

for 45 minutes and fixed in 2% formaldehyde in phosphate-buffered saline (PBS) for 10 

minutes and rinsed with 10% fetal bovine serum (FBS), containing 0.02% azide, in PBS 

(PBS-serum). Fixed cells were incubated with mouse anti-M1 FLAG primary antibody 

diluted in PBS-serum (250 µl/well) for 1 hour and then washed (three times, 5 minutes 

each) with PBS-serum. The cells were then incubated with horseradish peroxidase-
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conjugated goat anti-mouse IgG secondary antibody (Pierce Biotechnology, Rockford, 

IL) diluted in PBS-serum (250 µl/well) for 1 hour, washed three times with PBS-serum 

and washed three times with PBS. The cells were then incubated for 1 hour at 37°C with 

ABTS (2,2 β-Azinobis [3-ethylbenzothiazoline-6- sulfonic acid]-diammonium salt) 

(Pierce Biotechnology). A 200 µl aliquot was then removed from each well, transferred 

to a 96-well plate and the absorbance read at 405 nm (corrected for blank). Internalization 

is expressed as the percent difference in surface LPA1 between unstimulated cells and 

agonist-stimulated cells. The data are the mean±s.e.m. of six replicates/siRNA sample 

combined from two independent experiments.  

 

3.10 Cholesterol measurements  

HeLa cells, stably expressing FLAG-tagged LPA1, were seeded in sixwell plates at a 

density of 0.5x106 cells per well, allowed to attach overnight and then incubated with 

serum-free DMEM for 24 hours prior to treatment. The cells were treated for 60 minutes, 

as described in the figure legend, rinsed twice with ice-cold PBS (pH 7.4) and then 

solubilized in ice-cold PBS (pH 7.4) containing 1% Triton X-100 and protease inhibitor 

cocktail (2 mM AEBSF, 1 mM EDTA, 130 µM bestatin, 14 µM E-64, 1 µM leupeptin 

and 0.3 µM aprotinin). Total cellular cholesterol was quantified using an Amplex Red 

Cholesterol Assay Kit (Molecular Probes; Eugene, OR), as indicated by the 

manufacturer. Briefly, cholesterol esters in the cell extracts are hydrolyzed by cholesterol 

esterase into cholesterol, which is then oxidized by cholesterol oxidase to yield H2O2, 

which is detected using 10-acetyl-3,7-dihydroxyphenoxazine (Amplex Red). In the 

presence of horseradish peroxidase (HRP), Amplex Red reacts with H2O2 to produce 
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fluorescent resorufin. Fluorescence was measured with a fluorescence microplate reader 

using excitation at 560 nm and fluorescence detection at 590 nm and total cholesterol was 

calculated from a standard curve using purified cholesterol. Cellular cholesterol was 

normalized to total protein concentration, which was quantified by BCA Protein Assay 

(Pierce Biotechnology).  

 

3.11 Statistical analysis  

The data is expressed as the mean±s.e.m. from the indicated number of independent 

experiments performed in triplicate. Differences were analyzed by two-factor ANOVA 

followed by a Tukey’s statistical significance test.  
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CHAPTER 4 

RESULTS 
 
 

 
4.1 LPA1 is internalized by clathrin-mediated endocytosis 
 

Previous work from our lab had suggested that LPA1 was internalized by clathrin-

dependent endocytosis based on the inhibitory effects of mutant dynamin 2 K44A and 

Rab 5 S34N (186). However dynamin K44A can also inhibit endocytosis from 

cholesterol-rich caveolae (186, 189, 190). To directly test whether LPA1 used a clathrin-

dependent pathway, we determined the effects of reducing the cellular abundance of the 

clathrin heavy chain, using small interfering RNAs (siRNAs), on the endocytosis of 

LPA1. Figure 8A shows the distribution of FLAG-tagged LPA1 in stably transfected 

HeLa cells (LPA1/HeLa cells). In untreated cells, LPA1 is localized predominantly at the 

plasma membrane and to a lesser extent, at the Golgi complex, which probably represents 

newly synthesized LPA1 en route to the plasma membrane. Treatment with 10 µM LPA 

results in a redistribution of LPA1 to numerous punctate structures, which we have 

previously shown to colocalize with transferrin receptor-positive endosomes (186). To 

investigate the role of clathrin in LPA1 endocytosis, we adapted a double-transfection 

procedure that was previously described (185) to knock down clathrin heavy chain 

amounts in HeLa cells to near undetectable levels. Using this procedure, we observed a 

73% reduction in the abundance of clathrin relative to mock-transfected siControl cells 

(Figure 8B) in LPA1/HeLa cells. Treatment of cells with clathrin siRNA did not alter the 

abundance of actin.  
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Figure 8. siRNA-mediated reduction of clathrin inhibits agonist-induced endocytosis 
of LPA1. (A) Stably-transfected LPA1/HeLa cells were incubated in the presence or 
absence of 10 µM LPA for 30 minutes, fixed and processed for immunofluorescence 
detection of FLAG-tagged LPA1 with M1 mouse anti-FLAG antibodies and 
fluorescently-labeled secondary antibodies. (B) Cell lysates were prepared from stably 
transfected LPA1/HeLa cells, which were either mock transfected (siControl) or 
transfected with clathrin siRNA (siClathrin) for 48 hours, separated by SDS-PAGE and 
immunoblotted for clathrin heavy chain (CHC) or actin. (C) Stably transfected 
LPA1/HeLa cells grown in 24-well plates were either mock transfected (siControl) or 
transfected with clathrin siRNA (siClathrin) for 48 hours prior to treatment with or 
without 10 µM LPA for 45 minutes. The cells were fixed and processed for whole-cell 
ELISA to quantify surface LPA1 receptors as described in Materials and Methods. LPA1 
internalization is expressed as the percentage difference in surface LPA1 between 
unstimulated cells and agonist-stimulated cells. The data are the mean±s.e.m. of six 
replicates/siRNA sample combined from two independent experiments. **P<0.01 
compared to levels in the siControl. (D) Stably transfected LPA1/HeLa cells were treated 
with clathrin siRNA for 48 hours prior to incubation with FITC-labeled mouse anti-CD59 
and Alexa 594-Tfn for 30 minutes and fluorescence visualization of anti-CD59 and Alexa 
594-Tfn labeling. Bar, 10 µm. 
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Endocytosis of LPA1 was quantified by using a whole-cell ELISA, which measures the 

agonist-induced loss of cell surface LPA1 (182, 191). In siControl cells, 10 µM LPA 

induced LPA1 internalization (~30%) and this was strongly inhibited in siClathrin cells 

(~2%) (Figure 8C). In siClathrin cells, both the agonist-stimulated internalization of β2-

adrenergic receptors (β2ARs) (data not shown), which are known to use clathrin-

dependent mechanisms (192) and the constitutive endocytosis of Alexa transferrin was 

strongly inhibited (Figure 8D). As a negative control, we examined the effects of clathrin 

knockdown on the endocytosis of anti-CD59 antibodies bound to endogenous CD59, 

which is internalized via cholesterol rich, detergent-resistant membranes and then merges 

with a clathrin-independent trafficking pathway that is regulated by the Arf6 GTPase as 

shown by Naslavsky et al. (187). LPA1/HeLa cells were transfected either with or without 

clathrin siRNAs and then incubated with FITC-labeled mouse anti-CD59 antibodies 

along with Alexa 594-Tfn for 30 minutes. The cells were acid-stripped to remove 

surface-bound anti-CD59 antibodies and Alexa 594-Tfn. In cells transfected with clathrin 

siRNAs, FITC-labeled anti-CD59 antibodies localized to pleomorphic tubulovesicular 

structures (Figure 8D, Anti-CD59) similar to those described (187). As expected, these 

same siRNA-treated cells did not internalize Alexa 594-Tfn (Figure 8D, Alexa 594-Tfn). 

Taken together, these results indicate that LPA1 is internalized by clathrin-mediated 

endocytosis. 

 

4.2 β-arrestins are critical for LPA1 signal attenuation and receptor endocytosis 

Clathrin-mediated endocytosis of many GPCRs is also dependent upon their 

association with the multi-functional β- arrestins (13, 22). β- arrestin binding is initiated 
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through the agonist-induced phosphorylation of cytoplasmic serine/threonine residues in 

the GPCR by G protein receptor kinases (GRKs) such as GRK2 (7). β-arrestin binding 

promotes both receptor desensitization, by preventing receptor-G protein coupling and 

clathrin-dependent endocytosis of the receptor. To determine whether β-arrestins are 

required for LPA1 endocytosis, we compared agonist-stimulated internalization of LPA1 

and β2AR in mouse embryo fibroblasts (MEFs) derived from either wild-type or β-

arrestin 1 and 2 null mice (193) (Figure 9). Wild-type MEFs were transiently transfected 

with plasmids encoding either LPA1 or β2ARs and then incubated in the presence or 

absence of agonist. In the absence of agonist treatment, both receptors were primarily 

localized to the plasma membrane in a diffuse pattern (Figure 9A, untreated). Upon 

agonist treatment for 30 minutes, both LPA1 and β2ARs redistributed to small punctate 

endosomal structures dispersed throughout the cell. The labeling of these structures was 

not observed in non-permeabilized cells, thus indicating that they were internal 

endosomal structures (Figure 9A, non-permeabilized). In contrast to wild-type MEFs, 

agonist treatment of β-arrestin 1/2 KO MEFs expressing either LPA1 or β2ARs did not 

lead to their endocytosis (Figure 9B, +agonist). Expression of wild-type β-arrestin-2-GFP 

in the knockout cells restored agonist-induced endocytosis of both LPA1 (Figure 10, 30 

minutes) and β2ARs (data not shown), thus indicating that β-arrestins were required for 

the endocytosis of LPA1 as well as β2ARs. Previous studies have shown that agonist 

stimulation of different GPCRs leads to the translocation of cytosolic β- arrestin proteins 

to the plasma membrane (194). 
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Figure 9. Agonist-induced endocytosis of LPA1 is inhibited in β-arrestin 1/2 double 
knockout mouse embryo fibroblasts. (A) Wild-type MEFs were transiently transfected 
with plasmids encoding either FLAG-tagged LPA1 or HA-tagged β2AR and then 
incubated in the presence or absence of agonist (10 µM LPA or 20 µM isoproterenol, 
respectively) for 30 minutes prior to indirect immunofluorescence localization of the 
receptor proteins either in the presence or absence of detergent permeabilization. (B) β-
arrestin ½ double knockout MEFs were transiently transfected with plasmids encoding 
either FLAG-tagged LPA1 or HA-tagged β2ARs and incubated in the presence or 
absence of agonist, as above, prior to indirect immunofluorescence localization of the 
receptor proteins. Bar, 10 µm.  
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For some GPCRs such as β2ARs, this association with β- arrestins is transient and 

is not observed following receptor endocytosis, whereas other GPCRs, such as 

angiotensin AT1a receptors and vasopressin receptors, maintain a stable association with 

β-arrestins even on endosomes after endocytosis (19). To determine whether LPA1 

formed a transient or stable association with β-arrestins, we examined the distribution of 

LPA1 and β-arrestin-2-GFP after 0, 2 and 30 minutes of LPA treatment (10 µM) (Figure 

10). In untreated cells, LPA1 localized to the plasma membrane and β-arrestin-2-GFP 

localized in a diffuse cytoplasmic pattern (Figure 10, Untreated). After 2 minutes of LPA 

treatment, LPA1 localized to small punctate structures, which partially co-localized with 

β-arrestin-2-GFP (Figure 10, inset, arrows). However, many punctate structures 

contained LPA1 but did not contain β-arrestin-2-GFP, particularly in the larger and more 

pleotropic structures. Following 30 minutes of LPA treatment, LPA1 localized to 

heterogeneously sized endosomal structures, but β-arrestin-2-GFP returned to the diffuse 

cytoplasmic pattern observed in untreated cells (Figure 10, 30 minutes). This suggested 

that β-arrestins dissociate from LPA1 receptors at or near the cell surface and do not form 

a stable association with β-arrestin proteins, as defined by Oakley et al. (19, 31). Taken 

together, these data indicate that β-arrestins are critical for the endocytosis of LPA1 and 

that LPA1 only transiently associates with β-arrestins at the cell surface. As mentioned 

above, β-arrestin binding to activated GPCRs leads to signal attenuation (195). We next 

investigated whether β-arrestins were important for the desensitization of LPA1.  
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Figure 10. Re-expression of wild-type β-arrestin 2 GFP in β-arrestin knockout 
MEFs restores LPA1 receptor endocytosis. (A) β-arrestin 1/2 double knockout MEFs 
were transiently transfected with plasmids encoding LPA1 and wild-type β-arrestin-2-
GFP. Cells were then incubated with 10 µM LPA for 0, 2, or 30 minutes prior to fixation 
and indirect immunofluorescence. The inset shows a magnified image of the boxed 
region and the arrows indicate punctate structures that co-label for both LPA1 and β-
arrestin-2-GFP. Note that the recruitment of β-arrestin2-GFP to these punctate structures 
is transient, observable after 2 minutes of LPA treatment but not after 30 minutes of LPA 
treatment. 
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Figure 11. Re-expression of wild-type β-arrestin 2 GFP in β-arrestin knockout 
MEFs restores LPA1 signal attenuation. MEFs derived from wild type (WT) or β-
arrestin 1/2 null (βArr 1/2KO) mice were transfected with plasmid encoding wild-type 
LPA1 receptors; β-arrestin 1/2 null MEFs were also co-transfected with plasmids 
encoding LPA1 and wild-type β-arrestin 2 (βArr 1/2KO + LPA1 + WT βArr2). Cells were 
then labeled with [3H]myo-inositol overnight in serum-free medium and incubated for 1 
hour in the absence (Untreated) or presence of 10 µM LPA prior to analysis of 
phosphoinositide hydrolysis, as described in Materials and Methods. The radioactivity 
recovered in the different samples was normalized to total cellular protein and the data 
are presented as the mean±s.e.m. of triplicate measurements from a representative 
experiment that was repeated three times. **P<0.01, comparison of LPA-stimulated 
phosphoinositide hydrolysis in β-arrestin 1/2 KO MEFs to that observed in WT MEFs. 
Bar, 10 µm. 
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We examined the ability of LPA1 receptors, which activate Gi, Gq and G12/13 

signaling pathways (Fukushima et al., 1998), to promote phosphoinositide (PI) 

hydrolysis, via Gq stimulation of phospholipase C, in the wild type and β-arrestin 1/2 KO 

MEFs (Figure 11). LPA1-transfected wild type and β-arrestin 1/2 KO MEFs were labeled 

with [3H]inositol and the accumulation of inositol phosphates was determined in 

untreated cells and cells treated with 10 µM LPA for 60 minutes at 37°C. LPA treatment 

increased the accumulation of [3H] inositol phosphates in wild-type MEFs by ~2.5-fold. 

However, stimulation of LPA1-transfected β-arrestin 1/2 KO MEFs led to a 4.3-fold 

increase in inositol phosphate accumulation, suggesting that β-arrestins are important for 

attenuation of LPA signaling. To further test this, we determined the effects of re-

expression of wild-type β-arrestin 2 on inositol phosphate accumulation in LPA1-

transfected β- arrestin 1/2 KO MEFs (Figure 11). Co-transfection of wild-type β-arrestin 

2 and LPA1 in the β-arrestin 1/2 KO MEFs reduced the magnitude of LPA-induced 

inositol phosphate accumulation to 3.1-fold, which was similar to that observed in LPA1-

transfected WT MEFs (2.5-fold). Taken together, these observations strongly support the 

notion that β-arrestin association with LPA1 receptors is important for signal attenuation 

and for clathrin-mediated receptor internalization. 

 

4.3 Membrane cholesterol is required for LPA1 signaling and receptor endocytosis 

Having established that the agonist-induced endocytosis of LPA1 was mediated by 

a β-arrestin- and clathrin-dependent pathway, we next investigated the role of membrane 

cholesterol in LPA1 signaling and trafficking. As mentioned, membrane cholesterol has 

been shown to be important for LPA stimulation of PI3-kinase/Akt signaling (184). To 
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address this question, we first examined the effects of cholesterol extraction with methyl-

β-cyclodextrin (MβCD) and the effects of cholesterol disruption with the cholesterol 

binding drug, nystatin, on LPA stimulation of phosphoinositide hydrolysis, which is 

stimulated by Gq signaling. As a first step, we measured the effects of these cholesterol-

perturbing drugs and the effects of water-soluble cholesterol:MβCD complexes on the 

cellular abundance of cholesterol in LPA1/HeLa cells by using a quantitative cholesterol 

measurement assay (see Materials and Methods) (Table 1). Control LPA1/HeLa cells 

contained 17.10±0.13 µg cholesterol/mg protein and treatment with 5 mM MβCD for 1 

hour reduced cellular cholesterol by 62% to 6.5±0.05 µg cholesterol/mg protein. Addition 

of 10 mM cholesterol, as a water-soluble MβCD complex, for 1 hour after MβCD 

extraction, increased cellular cholesterol levels to approximately twice that observed in 

control cells (34.2±0.78 µg cholesterol/mg protein). In contrast, treatment of LPA1/HeLa 

cells with 50 µg/ml nystatin for 1 hour slightly elevated the amount of cellular cholesterol 

(20.8±1.5 µg cholesterol/mg protein) and addition of water-soluble cholesterol to 

nystatin-treated cells increased cellular cholesterol amounts by approximately 2.5-fold 

relative to control LPA1/HeLa cells (42.9±1.3 µg cholesterol/mg protein). This is 

consistent with the notion that nystatin merely binds sterols but does not extract them 

from cells. We next examined the effects of these cholesterol-perturbing drugs on LPA1 

stimulation of phosphoinositide hydrolysis, which is promoted by Gq stimulation of 

phospholipase C. LPA stimulation of native HeLa cells (Figure 12, HeLa) resulted in a 

small 1.9-fold increase in accumulation of [3H] inositol phosphates, whereas stimulation 

of LPA1/HeLa cells resulted in a large increase in PI hydrolysis (~14-fold) (Figure 12, 

lane 1).  
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Figure 12. Stimulation of phosphoinositide hydrolysis by LPA1 receptors is inhibited 
by cholesterol extraction with methyl-β-cyclodextrin. Either native HeLa cells or 
stably transfected LPA1/HeLa cells were labeled overnight with [3H] myo-inositol and 
then either left untreated (HeLa and lane 1) or pre-incubated with 5 mM MβCD for 1 
hour (lane 2), 50 µg/ml nystatin for 1 hour (lane 4), 5 mM MβCD for 1 hour followed by 
10 mM cholesterol/MβCD complexes for 60 minutes (lane 3), or 50 µg/ml nystatin for 1 
hour followed by 10 mM cholesterol/MβCD complexes for 60 minutes (lane 5) prior to 
an additional 1 hour treatment with 10 µM LPA. Cells were then solubilized and the total 
accumulation of labeled inositol phosphates was determined. The radioactivity recovered 
in the different samples was normalized to total cellular protein and the data are presented 
as the mean±s.e.m. of triplicate measurements from a representative experiment that was 
repeated four times. **a, P<0.01, comparison of LPA-stimulated phosphoinositide 
hydrolysis in MβCD-treated LPA1/HeLa cells to that observed in non-MβCD-treated 
LPA1/HeLa cells. **b, P<0.01, comparing phosphoinositide hydrolysis in MβCD-treated 
or nystatin-treated LPA1/HeLa cells that were incubated with water-soluble cholesterol to 
that observed in unstimulated LPA1/HeLa cells. 
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Figure 13. Stimulation of phosphoinositide hydrolysis by LPA1 but not M1 mAChRs 
receptors is inhibited by cholesterol extraction with methyl-β-cyclodextrin. HeLa 
cells were transiently transfected with plasmids encoding either vector alone (lanes 1 and 
2), LPA1 (lanes 3 and 4), or M1 mAChRs (lanes 5 and 6). The cells were incubated in the 
absence (–) or presence (+) of 5 mM MβCD for 1 hour prior to a subsequent 1 hour 
incubation with agonist (10 µM LPA or 1 mM carbachol). After solubilization, the 
radioactively labeled inositol phosphates were isolated as described. The radioactivity 
recovered in the different samples was normalized to total cellular protein and the data 
are presented as the mean±s.e.m. of triplicate measurements from a representative 
experiment that was repeated three times. **P<0.01, comparison of LPA-stimulated 
phosphoinositide hydrolysis in MβCD-treated LPA1-transfected HeLa cells to that 
observed in non-MβCD-treated cells. 
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Treatment of LPA1/HeLa cells with 5 mM MβCD reduced LPA stimulated PI hydrolysis 

to 3.9-fold (72% inhibition) (Figure 12, lane 2). Treatment of LPA1/HeLa cells with 50 

µg/ml nystatin did not significantly affect agonist-dependent PI hydrolysis (Figure 12, 

lane 4). Addition of water-soluble cholesterol:MβCD complexes, which contained 10 

mM cholesterol, to MβCD-treated or nystatin-treated cells greatly increased the extent of 

basal accumulation of labeled inositol phosphates (Figure 12, lanes 3 and 5). Addition of 

water-soluble cholesterol led to a greater increase in the basal level of inositol phosphate 

accumulation as compared to that observed in LPA stimulated samples, which 

consequently decreased the fold induction of PI hydrolysis by LPA. This could be due to 

enhanced Gαq signaling that is independent of LPA1 receptors. These results suggested 

that the presence of membrane cholesterol was important for LPA1 stimulation of PI 

hydrolysis. As a control, we examined the effects of MβCD on the stimulation of PI 

hydrolysis by an unrelated Gq-coupled receptor, the M1 muscarinic acetylcholine 

receptor (M1 mAChR). For these experiments, HeLa cells were transiently transfected 

with plasmids encoding either wild-type LPA1 or M1 mAChRs. Whereas 5 mM MβCD 

inhibited LPA1-mediated PI hydrolysis (Figure 13, compare lanes 3 and 4) as expected, it 

did not significantly reduce the extent of PI hydrolysis in response to agonist stimulation 

(1 mM carbachol) of M1 mAChR-expressing cells (Figure 13, compare lanes 5 and 6). 

Immunofluorescence microscopy indicated that the transfection efficiencies of the LPA1 

and M1 mAChR plasmids were comparable and were approximately 40% (data not 

shown). These results indicated that the reduction of LPA1- mediated PI hydrolysis by 

MβCD was not due to inhibition of either Gαq or phospholipase C activities, but rather 

was due to a specific inhibition of LPA1 function. Taken together, these results suggest 
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that the presence of plasma membrane cholesterol is critical for LPA1-dependent 

signaling to phospholipase C (Figure 12).  

Next, we investigated whether membrane cholesterol was also important for LPA1 

endocytosis. We compared the effects of MβCD on the agonist-induced endocytosis of 

LPA1 and M1 mAChRs, which are also internalized by clathrin- and β- arrestin-

dependent mechanisms (196). Stably transfected LPA1/HeLa cells or transiently-

transfected HeLa cells expressing M1 mAChRs were pre-incubated in the presence or 

absence of 5 mM MβCD for 1 hour. These cells were then incubated with the respective 

agonists and Alexa 594-Tfn for 30 minutes. In untreated cells, LPA1 and M1 mAChRs 

localized to the plasma membrane, whereas Alexa 594-Tfn labeled pleomorphic 

endosomal structures (Figure 14, untreated). Agonist stimulation induced the endocytosis 

of both receptors into endosomal structures. To quantify GPCR endocytosis, we 

measured the extent of GPCR (either LPA1 or M1) co-localization with the internalized 

Alexa 594- Tfn using Metamorph image analysis (186, 188). In control cells, treatment 

with 10 µM LPA increased LPA1 and Alexa 594-Tfn co-localization by 3.3- fold relative 

to untreated cells (Figure 14, Control). Preincubation with 5 mM MβCD reduced this 

agonist-induced co-localization by more than 50% (Figure 14, compare black bars in 

control cells to cells treated with 5 mM MβCD). Addition of 10 mM water-soluble 

cholesterol restored LPA1 and Alexa 594-Tfn co-localization to near control levels 

(Figure 14, MβCD + cholesterol). In contrast to LPA1, agonist treatment (1 mM 

carbachol, 30 minutes) stimulated a twofold increase in M1 mAChR colocalization with 

Alexa 594-Tfn, which was not inhibited by MβCD (Figure 14). These data suggested that 

plasma membrane cholesterol is important for both LPA1 endocytosis and signaling. 
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Figure 14. Cholesterol extraction inhibits the agonist induced endocytosis of LPA1 
but not M1 mAChRs. (A) HeLa cells were transiently transfected with plasmids 
encoding either LPA1 or M1 mAChRs and were incubated in the absence (Untreated) or 
presence of agonist (10 µM LPA or 1 mM carbachol, respectively) and 50 µg/ml Alexa 
594-Tfn for 30 minutes and then processed for indirect immunofluorescence localization 
of the transfected receptors. Bar, 10 µm. (B and C) HeLa cells were transfected as 
described above and were preincubated for 1 hour in the absence (Control) or presence of 
5 mM MβCD or MβCD and 10 mM cholesterol/MβCD complexes prior to a subsequent 
incubation in the presence or absence of 10 µM LPA and 50 µg/ml Alexa 594-Tfn. The 
cells were fixed and processed for immunofluorescence localization of the transfected 
receptors. The extent of colocalization between LPA1 (B) or M1 mAChRs (C) and the 
internalized Alexa 594-Tfn was quantified using Metamorph image analysis as described 
in Materials and Methods. The data are expressed as the mean±s.e.m. of 20 
cells/condition from a representative experiment that was performed three times with 
similar results. **P<0.01 compared with control, LPA-treated cells that colocalized with 
internalized Alexa 594-Tfn (Figure 14, +agonist).  
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4.4 LPA1 localizes to detergent-resistant membrane microdomains upon agonist 

stimulation 

  Although the data above indicates that membrane cholesterol is essential for LPA1 

endocytosis, the data in Figure 8-11 indicate that LPA1 is internalized by clathrin- and β-

arrestin-dependent mechanisms, which are distinct from cholesterol-dependent endocytic 

pathways (26). To further investigate this apparent difference, we examined whether 

LPA1 localized to detergent-resistant membrane domains, which are enriched in both 

cholesterol and glycosphingolipids (27). We examined the effects of LPA stimulation on 

the resistance of LPA1 to extraction with Triton X-100. LPA1/HeLa cells were incubated 

with 10 µM LPA for different times before extraction with ice-cold 1% Triton X-100 and 

indirect immunofluorescence (Figure 15A). LPA1 staining in unstimulated cells was 

greatly reduced following Triton X 100 extraction (Figure 15A, 0 minute). In contrast, 

the cell-associated LPA1 staining, which remained after detergent extraction, was 

increased with time of agonist stimulation (Figure 15A). We quantified the detergent-

resistant LPA1 staining associated with the cells by measuring the pixel intensity of 

LPA1-specific fluorescence using MetaMorph image analysis (see materials and 

methods) and normalizing this value to DNA content as assessed by Hoechst dye labeling 

(Figure 15B). This analysis showed that detergent extraction of unstimulated cells 

reduced the level of cell-associated LPA1 staining to 5% of that observed in untreated and 

non-extracted cells. Cell-associated LPA1 staining progressively increased with time of 

LPA treatment such that after 30 minutes of LPA stimulation approximately 38% of 

LPA1 immunoreactive staining remained after detergent extraction, relative to control 

cells (Figure 15B, solid circles). Extraction of membrane cholesterol with 5 mM MβCD 
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prior to LPA stimulation blocked the LPA-induced increase in detergent resistance of 

LPA1 (Figure 15B, open triangles). As detergent resistance of proteins can also be 

increased by their association with the actin cytoskeleton, we examined the effects of 

inhibiting actin polymerization with cytochalasin D (5 µM) on the detergent resistance of 

LPA1 (Figure 15B, open squares). We observed no noticeable difference between the 

detergent resistance of LPA1 in cells pre-treated with cytochalasin D and untreated cells, 

after brief exposure to LPA (i.e. 0 to 8 minutes). A slight delay in the rate of increase of 

LPA1 detergent resistance was observed between 10 and 20 minutes of LPA treatment in 

cells that were pre-treated with cytochalasin D, but the extent of detergent resistance was 

the same in both untreated and cytochalasin D-treated cells after 30 minutes of LPA 

stimulation. These data indicate that LPA treatment promotes the association of LPA1 

with detergent resistant membranes and that this process is inhibited by cholesterol 

extraction. Given that LPA treatment for 30 minutes promotes the endocytosis of LPA1 

into transferrin receptor+ endosomes, it is likely that some of the detergent resistant LPA1 

receptors observed after longer LPA treatment reside in endosomes. Studies have shown 

that transferrin receptor+ endosomes are enriched in cholesterol (Hao et al., 2002). To 

investigate the effects of agonist stimulation on the detergent resistance of surface LPA1 

receptors, we labeled surface LPA1 with mouse anti-FLAG antibodies on ice prior to 

detergent extraction (Figure 16C,D). The LPA1 expressed in LPA1/HeLa cells contains an 

N-terminal FLAG epitope tag that is accessible to the extracellular medium. In the 

absence of detergent, mouse anti- FLAG antibodies labeled only the cell surface in 

control cells (Figure 16C, Control). Triton X-100 extraction removed most of the surface-

bound antibody (only 15% of control, un-extracted cells remained) (Figure 16C,D, 0 
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minute). The detergent resistance of surface LPA1 increased with time of agonist 

treatment up to 45% of control levels after 6 minutes and then declined after 15 minutes 

and 30 minutes of LPA treatment (Figure 16C,D). These results suggest that the LPA1 

receptor associates with detergent-resistant membranes following agonist stimulation, 

both at the cell surface and following endocytosis in cholesterol-rich endosomes. 
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Figure 15. LPA1 receptors localize to detergent-resistant cellular domains upon 
agonist stimulation (total fluorescence). A) LPA1/HeLa cells were incubated with 10 
µM LPA for different times and subsequently treated with 1% cold Triton X-100 on ice 
for 3 minutes, fixed and processed for indirect immunofluorescence localization of LPA1. 
(B) Quantitative analysis of receptor expression after detergent extraction was performed 
by MetaMorph image analysis as described in Materials and Methods. Cells were either 
untreated, treated with 5 µM cytochalasin D (Cyto. D) for 30 minutes, or treated with 5 
mM MβCD for 1 hour, prior to incubation with 10 µM LPA for the indicated times. The 
LPA1 labeling in detergent-extracted cells was normalized to the amount of LPA1 
labeling observed in non-agonist-treated cells, which had not been subjected to detergent 
extraction. The data are presented as the mean±s.e.m. of five to six cells per time point 
and are from a representative experiment that was repeated twice with similar results.  
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Figure 16. LPA1 receptors localize to detergent-resistant cellular domains upon 
agonist stimulation (surface fluorescence). (C) LPA1/HeLa cells were incubated with 
10 µM LPA for different times and incubated with mouse anti-FLAG antibody on ice for 
30 minutes prior to extraction with ice-cold 1% Triton X-100, to label surface LPA1 
receptors. Cells were then processed for indirect immunofluorescence localization of 
surface LPA1. (D) Quantitative analysis of surface LPA1 receptor expression after 
detergent extraction was performed by MetaMorph image analysis as described in 
Materials and Methods. The LPA1 labeling in detergent extracted cells was normalized to 
the amount of LPA1 labeling observed in non-agonist treated cells, which had not been 
subjected to detergent extraction. The data are presented as the mean±s.e.m. of five to six 
cells per time point and are from a representative experiment that was repeated twice with 
similar results. **P<0.01, comparison of the amount of detergent-resistant surface LPA1 
staining after the indicated time of agonist treatment with that observed in unstimulated 
cells. Bar, 10 µm. 
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4.5 Membrane cholesterol is required for the plasma membrane recruitment of 

cytosolic β-arrestins by activated LPA1 

 As β-arrestins are required for the clathrin-mediated endocytosis of LPA1, we 

examined whether membrane cholesterol was important for the association of β-arrestins 

with LPA1 or with β2AR, as a control. Preliminary experiments showed that, in HeLa 

cells that were transiently transfected with plasmid encoding either LPA1 or β2ARs along 

with β- arrestin -2-GFP, both LPA1 and  β2ARs transiently recruited cytosolic β-arrestin-

2-GFP to punctate plasma membrane structures after 2 minutes of agonist stimulation 

(Figure 18, Control). Double-labeling experiments showed that β-arrestin- 2-GFP 

extensively co-localized with the plasma membrane clathrin adaptor, AP2 (Figure 17), 

suggesting that brief LPA stimulation led to the recruitment of β-arrestin-2-GFP to cell 

surface clathrin-coated pits. After 30 minutes of agonist stimulation, both LPA1 and 

β2ARs localized to endosomal structures, but β-arrestin 2 GFP returned to a cytosolic 

distribution (data not shown). This is consistent with published reports showing that 

β2ARs transiently associate with β- arrestins (19).  

We next examined the effects of cholesterol extraction on the surface recruitment 

of β-arrestin-2-GFP by LPA1 and β2AR after 2 minutes of agonist stimulation (Figure 8). 

β-arrestin-2- GFP localized in a diffuse cytoplasmic pattern in unstimulated cells and 

both LPA1 and β2AR were localized to the plasma membrane (data not shown). After 2 

minutes of LPA treatment, β-arrestin-2-GFP colocalized with LPA1 in punctate spots at 

the cell surface (Figure 18, Control, left panels), which also colocalized with AP2 (see 

Figure 17).  
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Figure 17. LPA stimulation leads to the co-localization of β-arrestin-2-GFP with 
clathrin AP2 adaptors. LPA1/HeLa cells were transiently transfected with plasmids 
encoding β-arrestin-2-GFP and incubated with 10 µM LPA for either 0 minute or 2 
minutes prior to fixation. Endogenous clathrin AP2 was localized in permeabilized cells 
using mouse anti-AP2 antibodies. The inset shows a high magnification image of the 
boxed region and the arrows indicate structures where β-arrestin-2-GFP co-localized with 
AP2. Bar, 10 µm. 
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Similarly, after 2 minutes of isoproterenol treatment of β2AR-expressing cells, β-

arrestin- 2-GFP localized to punctate spots at the cell surface (Figure 18, Control, right 

panels). Pre-incubation with 5 mM MβCD for 60 minutes completely inhibited the 

recruitment of β-arrestin- 2-GFP to the cell surface by LPA1 and β-arrestin-2-GFP 

remained in a diffuse cytosolic distribution (Figure 18, MβCD, see inset). Addition of 10 

mM water-soluble cholesterol restored the ability of LPA1 to recruit β-arrestin-2-GFP to 

the cell surface in MβCD-treated cells (Figure 18, MβCD:cholesterol). In contrast, 

incubation with MβCD did not inhibit β-arrestin-2-GFP recruitment to punctate surface 

spots by β2ARs (Figure 18, MβCD, see inset). Addition of water-soluble cholesterol did 

not alter the surface recruitment of β-arrestin 2-GFP by β2ARs (Figure 18, MβCD-

cholesterol). To quantify these effects, we determined the percentage of cells that showed 

β-arrestin recruitment to the plasma membrane after 2 minutes of agonist stimulation of 

either LPA1 or β2AR (Figure 19). In control cells and in cholesterol repleted cells (i.e. 

MβCD-cholesterol), β-arrestin-2-GFP was recruited to the cell surface in ~80% of cells 

expressing either LPA1 or β2AR. Only 4% of LPA1-expressing cells showed surface 

recruitment of β-arrestin-2-GFP in MβCD-treated cells. In contrast, approximately 50% 

of β2AR-expressing cells exhibited surface recruitment of β-arrestin-2-GFP. Taken 

together, these results indicate that LPA1 is much more dependent upon plasma 

membrane cholesterol for the recruitment of β-arrestin than β2ARs. This also provides a 

possible link between membrane cholesterol and clathrin dependent endocytosis of LPA1 

as β-arrestin is critical for endocytosis of LPA1.  
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Figure 18. mβcd extraction prevents recruitment of β-arrestin-2-GFP to the plasma 
membrane by LPA1 but not by β2AR. (a,b) HeLa cells were transiently transfected 
with plasmid encoding either LPA1 (a) or β2AR (b) along with β-arrestin-2-GFP. The 
cells were then left untreated, pretreated with 5 mM mβcd for 1 hour, or treated 
sequentially with 5 mM mβcd for 1 hour and 10 mm water-soluble cholesterol for 1 hour 
prior to incubation with 10 µm LPA for 2 minutes. The cells were then fixed and 
processed for indirect immunofluorescence microscopy. The inset shows a magnified 
image of the region of the cell indicated by the arrow. 

 

 

 

 



71

  

 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Figure 19. Phenotypic quantitation of recruitment of β-arrestin-2-GFP to the 
plasma membrane. The percentage of cells exhibiting recruitment of β-arrestin-2-GFP 
to punctate plasma membrane spots after 2 minutes agonist stimulation was determined 
by scoring 100 cells per condition for cellsexpressing LPA1 and β2AR. Bar, 10 µm. 
 
 



72

CHAPTER 5 

DISCUSSION 

 

All members of the GPCR superfamily share the ability to rapidly respond to 

agonist stimulation and then to undergo desensitization (181). Many of these GPCRs are 

also rapidly internalized into cells via one of several distinct endocytic pathways. 

However, the mechanisms that regulate GPCR desensitization and determine the specific 

endocytic pathway used for internalization vary from receptor to receptor. In this study, 

we found that LPA1 receptors are internalized by a clathrin- and β-arrestin-dependent 

pathway, but that they also require plasma membrane cholesterol for receptor signaling 

and for their subsequent clathrin-dependent endocytosis. Our results indicate that the key 

requirement of membrane cholesterol for LPA1 endocytosis is for the association of LPA1 

with β-arrestin, which promotes both signal attenuation and clathrin-dependent 

endocytosis of the receptor.  

Caveolae and other detergent-resistant membrane domains are cholesterol-and 

glycosphingolipid-rich, are sites of active signal transduction and have been implicated in 

the activation of heterotrimeric G proteins, Ras signaling and eNOS signaling (27). 

Several lines of evidence suggest that LPA1Rs associate with cholesterol-rich, detergent-

resistant membranes and that this is important for LPA1-dependent signaling. First, 

cholesterol extraction with MβCD strongly inhibited LPA1 induction of phosphoinositide 

hydrolysis, via Gαq-mediated stimulation of phospholipase C (Figure 12). Gαq has been 

shown to be enriched in caveolae (197, 198), which supports the notion that LPA1 

stimulates PI hydrolysis by associating with Gαq in detergent resistant membranes. Re-



73

addition of cholesterol to MβCD treated cells increased both the basal and LPA-

stimulated levels of PI hydrolysis (Figure 12). The fact that MβCD extraction did not 

affect PI hydrolysis by the M1 mAChR suggests that cholesterol depletion does not 

impair either Gαq or phospholipase C activity per se, but that LPA1 stimulation of PI 

hydrolysis is particularly sensitive to cholesterol depletion (Figure 13). Two possible 

explanations for the difference between LPA1 and M1 mAChRs are that either LPA1 

exclusively couples to Gαq that is localized to detergent-resistant membrane domains or 

that membrane cholesterol is required for the physical association of LPA1 with Gαq. 

Second, we found that LPA stimulation enhanced the resistance of both surface and total 

LPA1 to extraction with TX-100 detergent (Figure 15). Resistance to detergent extraction 

is a common property of proteins that are associated with caveolae and other cholesterol-

rich membrane regions (27). The detergent resistance of surface LPA1 increased during 

the first 6 minutes of LPA treatment and then declined. This is consistent with a transient 

association of LPA1 with detergent-resistant microdomains prior to β-arrestin- and 

clathrin-dependent endocytosis. Disruption of the actin cytoskeleton with 5 µM 

cytochalasin D did not alter the agonist-induced detergent resistance of LPA1 suggesting 

that the increased detergent resistance of LPA1 was not due to its association with the 

actin cytoskeleton. However, cholesterol extraction completely prevented the agonist-

induced detergent resistance of LPA1, which is consistent with the notion that LPA1 

associates with cholesterol-rich membrane microdomains.  

Interestingly, total detergent-resistant LPA1 staining increased with time of LPA 

treatment even after longer periods of agonist stimulation (Figure 15B, 30 minutes). We 

have previously shown that about 35-40% of surface LPA1 receptors are internalized into 
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transferrin receptor+ endosomes after 30 minutes of LPA treatment (186). We 

hypothesize that some of the detergent-resistant LPA1 staining observed after longer LPA 

treatment resides in transferrin receptor+ endosomes, which are known to be enriched in 

cholesterol (199). Finally, a recent study showed that LPA stimulation of 

phosphoinositide 3-kinase and the downstream effector kinase, Akt, was inhibited by 

MβCD treatment in Vero cells (184). Collectively, these data suggest that LPA1 

association with cholesterol-rich plasma membrane regions is critical for LPA-induced 

signaling through Gαq. Given that a pool of Gαq is present in cholesterol-rich caveolae, 

we hypothesize that the localization of LPA1 to detergent resistant membranes is 

important for their association with the pool of Gαq that is localized to these domains.  

In support of a role for cholesterol in LPA1 endocytosis, we found that cholesterol 

extraction inhibited LPA1 association with β-arrestin and the subsequent clathrin-

dependent endocytosis of the receptor. Many different GPCRs interact with β-arrestins, 

which is important for the proper regulation of receptor function (181). Phosphorylation 

of specific serine/threonine residues in either the cytoplasmic tail or the third intracellular 

loop, by G protein receptor kinases, leads to the recruitment of β-arrestin proteins, which 

in turn block G protein/receptor coupling (desensitization) and also promote clathrin-

dependent endocytosis (22). Our data show that wild-type LPA1 receptors transiently 

recruit β- arrestin-2-GFP to discrete AP2+ structures at the cell surface, in an agonist-

stimulated fashion (Figure 17), but do not co-localize on endosomes with β-arrestin-2-

GFP (Figs 14 and 18). β- arrestins promote clathrin-dependent endocytosis of GPCRs by 

localizing receptors to clathrin coated pits through an interaction of β-arrestins with both 

clathrin heavy chain and the µ2 subunit of the AP-2 clathrin adaptor complex (23, 200). 
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Using MEFs derived from β-arrestin 1 and 2 double-knockout mice, we showed that both 

signal attenuation and endocytosis of LPA1 is dependent upon β-arrestin (Figs 9, 10 and 

11). Using an RNA interference approach to reduce the cellular abundance of clathrin 

heavy chain, we showed that knockdown of clathrin inhibited the internalization of LPA1, 

transferrin receptors, but not the internalization of the GPI-anchored protein, CD59, 

which localize to cholesterol rich membrane regions (Figure 8). Taken together, these 

data indicate that LPA1 receptors are internalized by β-arrestin- and clathrin-dependent 

endocytosis.  

The most significant finding of these studies was that cholesterol extraction 

inhibited β-arrestin recruitment to the plasma membrane by LPA1 and the subsequent 

endocytosis of these receptors (Figs 14 and 18) and that re-addition of cholesterol to 

MβCD treated cells restored both of these functions. As β- arrestin binding to LPA1 

precedes receptor endocytosis, we hypothesize that cholesterol is required for the 

association of LPA1 with β-arrestins and that it is the lack of β-arrestin binding that leads 

to the inhibition of LPA1 endocytosis. This is a novel and previously unappreciated role 

for membrane cholesterol in the recruitment of β-arrestins. We speculate that other 

GPCRs that localize to caveolae may also associate with β-arrestin in a cholesterol-

dependent manner. β2ARs localize to caveolae in cardiomyocytes in the absence of 

agonist but move out of caveolae and into clathrin-coated pits upon ligand binding (30, 

201). As β2AR endocytosis requires β-arrestin binding, it is probable that β-arrestin also 

binds to these receptors in caveolae. Whether the association of β-arrestin with β2ARs in 

cardiomyocytes is cholesterol dependent remains to be determined.  
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In contrast to LPA1, cholesterol extraction did not inhibit the endocytosis of M1 

mAChRs (Figure 13), which also follow a β- arrestin- and clathrin-dependent pathway 

(196) nor did cholesterol extraction inhibit the association of β2ARs with β-arrestins. 

This suggests that the cholesterol dependence of β-arrestin recruitment is a unique 

property of LPA1. Cholesterol may be important either for the direct recruitment and 

binding of β-arrestins to LPA1Rs or for the recruitment of kinases such as GRKs that 

phosphorylate agonist-stimulated LPA1. Indeed, GRK4 and GRK6 are palmitoylated, 

which is required for their membrane association (202, 203), and palmitoylation has been 

shown to target many proteins to cholesterol-rich membranes including SNARES (204), 

flotillins (205) and RGS16 (206). Recent work has shown that both LPA stimulation and 

activation of protein kinase C with phorbol esters promotes LPA1 phosphorylation (207).  

Are there physiological contexts where changes in cellular cholesterol modulate 

LPA signaling? One intriguing example may be prostate cancer cells, whose growth is 

potently stimulated by LPA. Cholesterol is elevated in these cells and LPA1 receptor 

signaling and trafficking contributes to their enhanced growth (88, 208, 209), perhaps by 

augmenting LPA signaling. Future studies should provide the answer to this and other 

questions about this novel process.  
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CHAPTER 6 

FUTURE DIRECTIONS 

 

In the previous chapter we had shown that membrane cholesterol is required for 

LPA-dependent localization of the LPA1 receptor to detergent resistant membrane 

microdomains in a time-dependent manner. Membrane cholesterol was required for LPA-

induced, Gαq-mediated phosphoinositide hydrolysis and subsequent endocytosis. We had 

also shown that membrane cholesterol is not required for LPA-induced, Gαi-mediated 

MAPK activation (unpublished observations). Together, these data would suggest that 

LPA-induced signaling from the LPA1 receptor to different G-proteins might be localized 

to different microdomains of the plasma membrane. Thus compartmentalization of 

signaling could potentially lead to specific targeting of a signaling pathway, eventually 

leading to regulation of a specific physiological response. Further studies need to be done 

to determine if the LPA1 receptor associates with Gαi in detergent sensitive membrane 

microdomains and if this association occurs before the LPA1 receptor localizes to 

detergent resistant microdomains (3 minutes). An important question that arises from the 

results in the previous chapter is what is the requirement for the localization of the LPA1 

receptor into detergent resistant membranes? One hypothesis is that the GRK, which is 

required to phosphorylate the LPA1 receptor, localizes to DRMs, thus leading to 

cholesterol-dependent β-arrestin recruitment, signal desensitization, and internalization. It 

is known that GRK4 or GRK6 can be palmitoylated causing them to localize to detergent 

resistant microdomains. Further studies need to be done to determine if this hypothesis is 

true or not.  
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PART II: 

DIFFERENT MOTIFS ARE REQUIRED FOR AGONIST-DEPENDENT VERSUS 
AGONIST-INDEPENDENT ENDOCYTOSIS OF THE LPA1 LYSOPHOSPHATIDIC 

ACID RECEPTOR
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CHAPTER 7 
 

 INTRODUCTION 
 
 

 
The serum phospholipid Lysophosphatidic acid (LPA) has growth-factor like 

properties and is involved in a variety of processes like wound healing, cell proliferation 

and survival, neurite retraction and cell migration (121). The diversity of responses 

elicited by LPA has been attributed to the fact that it mediates its effects through multiple 

G-protein coupled receptors (GPCRs). LPA has been shown to activate five GPCRs 

termed LPA1-5 (116, 117). Multiple variations in the domains of GPCRs give rise to the 

myriad of GPCRs found in different organisms, which differ in both structure and 

function. The plasma membrane expression of functional GPCRs can be regulated by a 

variety of mechanisms such as endocytosis, endosomal sorting, recycling and 

degradation. These mechanisms are regulated via a range of interactions mediated by 

motifs in the cytoplasmically exposed domains of GPCRs depending on their respective 

structure (1, 13, 210). Many GPCRs utilize either a clathrin-dependent pathway or one of 

a number of clathrin-independent pathways for internalization (211-214). Adaptor 

proteins involved in mediating endocytosis of GPCRs via a clathrin-dependent pathway 

include Clathrin, AP-2, and β-arrestins, which sort receptors into clathrin coated pits 

(CCPs) (1, 19, 23).  

β-arrestins have been shown to interact with many GPCRs (β2AR, LPA1) (1, 214) 

and have been shown to bind to serine/threonine residues, which have been preferentially 

phosphorylated by G-protein Receptor kinases (GRKs) (1). Interestingly, GPCRs like the 

thrombin activated PAR-1 do not require β-arrestins to mediate endocytosis (182). 
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Additionally, many GPCRs have been shown to be phosphorylated by second messenger 

kinases like PKA and PKC, primarily leading to desensitization or in some cases 

internalization  (15, 215, 216). Association of GPCRs with β-arrestins typically causes 

signal desensitization followed by receptor endocytosis, where endocytosis is mediated 

by a direct interaction with members of the endocytic machinery, AP-2 and Clathrin (1, 

23). Depending on the characteristics of agonist-dependent arrestin association, two 

classes of GPCRs have been proposed: Class A and Class B, which differ in their 

affinities for β-arrestin 1 and 2 and in their temporal-spatial association (31).   

Apart from β-arrestins, other adaptor proteins like AP-2 have been shown to 

mediate internalization of receptors in a β-arrestin independent fashion (PAR-1, TA2) 

(33, 182, 217). Several studies have shown that certain motifs like the dileucine- (LL/IL) 

and tyrosine-based (YXXφ) motifs in the cytoplasmic tails of GPCRs can mediate direct 

interactions with AP-2, facilitating endocytosis (33, 53, 54). Dileucine motifs have been 

found in the cytoplasmic tails of GPCRs and can mediate both agonist-dependent and 

agonist-independent internalization (218, 219). 

We have previously shown that the LPA1 receptor utilizes a clathrin - and β-

arrestin – dependent pathway for internalization following agonist treatment (186, 214). 

In this study we sought to investigate the motifs in the cytoplasmic tail of the LPA1 

receptor that might be involved in the internalization of the receptor. Two distinct motifs 

in the cytoplasmic tail are shown to be required for agonist-dependent versus agonist-

independent internalization of the LPA1 receptor. A serine cluster in the tail is required 

for transient β-arrestin association mediating agonist-dependent signal desensitization as 

well as subsequent endocytosis. However, a distal dileucine motif is required for agonist-
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independent internalization of the LPA1 receptor, which appears to be β-arrestin 

independent, AP-2 dependent and protein kinase C (PKC) dependent. This suggests that 

the LPA1 receptor utilizes two distinct mechanisms for agonist-dependent versus agonist-

independent internalization.   
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CHAPTER 8 

 MATERIALS AND METHODS 

 

8.1 Antibodies and reagents  

Lysophosphatidic acid (1-oleoyl-2-hydroxy-sn-glycero-3-phosphate; LPA) was 

purchased from Avanti Polar Lipids (Alabaster, AL). phorbol 12-myristate 13-acetate 

(PMA) was purchased from Sigma Chemical Co. (St Louis, MO). Wild-type and mutant 

HA-tagged LPA1 receptors were detected with mouse anti-HA antibodies (Covance, 

Berkeley, CA). myo-[3H]inositol was purchased from American Radiolabeled Chemicals 

(St Louis, MO); Bisindolylmaleimide I was purchased from Calbiochem. Cy3 Donkey 

anti-mouse secondary antibodies were purchased from Jackson ImmunoResearch. 

 

8.2 Plasmids 

HA-LPA1 plasmid was generated by PCR, using a previously described FLAG-LPA1 

plasmid as template (183). HA-tagged truncation mutant receptors, as described in the 

figure legends, were generated using the Gene-Tailor site-directed mutagenesis kit 

(Invitrogen, Carlsbad, CA), according to manufacturer’s instructions, with the HA-LPA1 

wild-type plasmid as template. All plasmids were subjected to DNA sequencing to 

confirm their sequences. β-arrestin GFP plasmids were kindly provided by Dr. Stefano 

Marullo.    
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8.3 Cell culture and DNA transfection  

HeLa cells stably expressing HA-tagged LPA1 receptor (termed LPA1/HeLa cells), native 

HeLa cells, wild-type (WT) MEF and β-arrestin 1/2 KO MEF cells were maintained in 

Dulbecco’s modified Eagle’s medium (DMEM) supplemented with 10% fetal bovine 

serum, 100 IU/ml penicillin, 100 µg/ml streptomycin (Media Tech, Herndon, VA) and 1 

mM sodium pyruvate (Biosource International, Camarillo, CA) at 37°C with 5% CO2. 

Cells were grown on glass coverslips (for immunofluorescence) and transfected in six-

well dishes, or were grown in 24-well dishes (for myo-[3H]inositol labeling) and 

transfected using Exgen 500 (Fermentas) or Lipofectamine 2000 (Invitrogen, Carlsbad, 

CA) according to manufacturer’s directions.  

 

8.4 Internalization Assay  

LPA1/HeLa cells or HeLa cells were plated on coverslips. For internalization assays 

involving different mutant LPA1 receptors (Figure 6), HeLa cells were transfected with 

plasmid DNA as described in the figure legends. For experiments with siRNA-mediated 

reduction of AP-2 (Figure 8), LPA1/HeLa cells were transfected with siAP2 as described 

in the figure legends. The day before experimentation, the cells were serum starved 

overnight. Prior to any acute treatments, cells were transferred onto ice and incubated 

with mouse anti-HA primary antibodies (Covance) for 1hr to label cell surface HA 

tagged-LPA1 wild-type and mutant receptors. Cells were then either left at 4°C (total 

surface) or transferred to 37°C and treated as described in the figure legends. Following 

treatments at 37°C, antibodies bound to the cell surface were removed by rinsing the cells 

with 100 mM glycine, 20 mM magnesium acetate, 50 mM KCl, pH 2.2 (acid wash) (187) 
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for 90 seconds, while retaining internalized antibody. For experiments with co-

transfected HA-LPA1 receptors and β-arrestin2 GFP (Figures 5 and 6), the surface 

antibodies were not removed by acid wash. Cells were rinsed and processed for 

immunofluorescence as described below.  

 

8.5 Immunofluorescence 

HA- LPA1 receptors were detected using mouse anti-HA antibody (Covance). AP-2 was 

detected using a mouse anti-AP2 antibody (AP.6) (Santacruz Biotechnology). For 

internalization assays, following anti-HA antibody incubations at 4°C, treatments at 

37°C, and acid wash, the cells were then fixed in 2% formaldehyde in phosphate buffered 

saline (PBS) for 10 minutes and rinsed with 10% fetal bovine serum (FBS) containing 

0.02% azide in PBS (PBS-serum). For AP-2 detection, following overnight serum 

starvation, cells were fixed and rinsed with PBS-serum and were incubated with mouse 

anti-AP2 antibodies diluted in PBS serum containing 0.2% saponin for 45 minutes. 

Following fixation and incubation with primary antibodies, the cells were washed three 

times with PBS serum and then incubated with fluorescently labeled donkey anti-mouse 

secondary antibodies (Jackson ImmunoResearch) diluted in PBS-serum containing 0.2% 

saponin for 45 minutes, washed three times with PBS-serum, washed once with PBS and 

mounted on glass slides as previously described (183). Images were captured using 

Hamamatsu digital camera mounted on a Leica Inverted microscope with a 63X oil 

immersion objective. Images were processed with Adobe Photoshop 7.0 software.  
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8.6 Quantitation of LPA1 Internalization 

For internalization assays, images were taken using a Hamamatsu digital camera mounted 

on a Leica Inverted microscope with a 63X oil immersion objective. The images were 

analyzed by Simple PCI software (Compix, Cranberry Township, PA) and total 

fluorescence (vesicles/cell) for both internalized and surface antibody levels were 

measured as described previously (220). Internalization (fluorescence after acid wash) is 

expressed as a percentage of total fluorescence of initial surface bound antibodies (4°C) 

for both wild-type and mutant LPA1 receptors. 

 

8.7 siRNA-mediated reduction of AP-2  

siRNA oligonucleotides to the µ-subunit of adaptin were purchased from Dharmacon 

(Lafayette, CO) and have been described previously (185). LPA1/HeLa cells were 

transiently transfected with 175 pmol (12-well plate) or 300 pmol (6-well plate) of 

siRNA to AP-2 (siAP2) using Lipofectamine 2000 (Invitrogen, Carlsbad, CA). The 

transfection medium was replaced with complete medium (without 

penicillin/streptomycin) 5 hours later and the cells were trypsinized after 2 hours and 

plated in a 6-well plate with (immunofluorescence) or without (immunoblotting) 

coverslips and then incubated for 16 hours. The cells were transfected a second time as 

above and the medium was then replaced with serum-free medium (SFM) and incubated 

for an additional 16 hours before experimentation.  
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8.8 Immunoblotting  

Following serum starvation overnight, cells were either incubated on ice with mouse anti-

HA antibodies for 30 minutes to label surface LPA1 receptor molecules (for 

phosphoinositide hydrolysis) and/or were solubilized by addition of lysis buffer (1% NP-

40, 1% sodium deoxycholate, 0.1% SDS, 0.15 M NaCl, 0.01 M sodium phosphate pH 

7.2, 2 mM EDTA, 50 mM NaF, 0.2 M sodium orthovanadate, 0.02% azide, 100 µg/ml 

leupeptin and 0.1 mM PMSF) and incubated on ice for 60 minutes. The samples were 

then separated by 10% SDS-PAGE and transferred to nitrocellulose. The nitrocellulose 

membrane was incubated with mouse anti-HA (HA- LPA1 receptor) (Covance) or mouse 

anti-AP2 (for detection of AP-2) (Santacruz Biotechnology) antibodies. The binding of 

primary antibodies was detected by using the West Pico enhanced chemiluminiscence 

detection kit (Pierce Biotechnology, Rockford, IL). 

 

8.9 Phosphoinositide hydrolysis  

HeLa cells were plated at a density of 4 x 104 cells/well into 24-well plates and 

transfected with plasmids encoding wild-type or mutant HA-LPA1 using Exgen500 

(Fermentas). At 24 hours post-transfection, cells were labeled overnight with myo-

[3H]inositol in inositol- and serum-free medium, treated as described in the figure 

legends and then processed for analysis of phosphoinositide hydrolysis by anion 

exchange chromatography as described (214).  
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8.10 Statistical analysis  

The data is expressed as the mean±s.e.m. from the indicated number of independent 

experiments performed in triplicate. Differences were analyzed by two-factor ANOVA 

followed by a Tukey’s statistical significance test.  
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CHAPTER 9 

RESULTS 

 

9.1 Agonist-independent internalization of the LPA1 receptor is PKC-dependent 

A previous study had suggested a role for PKC phosphorylation in the PMA-

induced internalization of the LPA1 receptor. PMA treatment caused desensitization and 

internalization of the LPA1 receptor in C9 rat hepatoma cells, which was sensitive to 

PKC inhibitors (207). To determine whether PMA treatment caused internalization of the 

LPA1 receptor in our LPA1/HeLa cells, we treated the cells with 1µM PMA and used the 

PKC inhibitor Bisindolylmaleimide I (Bis I) to inhibit the effects of PMA treatment. To 

measure internalization we bound mouse-anti HA antibodies to the cells expressing the 

HA-tagged LPA1 receptor at 4°C and then either left the cells at 4°C (total surface) or 

transferred these to 37°C. After the treatments at 37°C, the surface bound antibodies were 

removed with a mild acid wash (see materials and methods) while retaining the 

internalized antibody bound to the LPA1 receptor. As shown in Figure 20, in the 4°C (– 

Bis I) untreated control cells (initial surface bound antibodies), the anti-HA antibodies 

bound to the LPA1 receptor show a plasma membrane distribution. In the 37°C untreated 

cells (with acid wash) the anti-HA antibodies bound to the LPA1 receptor show a 

predominantly internal/endosomal localization (Figure 20, - Bis I/ 37°C untreated), as 

determined by co-localization with Alexa 594-Transferrin (data not shown). This internal 

pool of receptor molecules represents basal internalization of the HA-tagged LPA1 

receptor and its levels are about 15% of the 4°C untreated (–BisI) control (Fig 21, 37°C 

Untreated/white bar). 
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Figure 20. Agonist independent internalization of the LPA1 receptor is PKC-
dependent.  
For stably transfected LPA1/HeLa cells, surface receptors were labeled with mouse anti-
HA antibody (Covance) at 4°C for 1hour. The cells were washed and were either left at 
4°C or transferred to 37°C. The cells at 37°C were then treated with (+ Bis I) or without 
(- Bis I) Bisindolylmaleimide I for 30min at 37°C, prior to incubation in the absence 
(untreated) or presence of either 10µM LPA or 1µM PMA for 30min at 37°C. After the 
antibody-receptor complexes were allowed to internalize, the remaining surface bound 
antibodies were removed by mild acid wash. The cells at both 4°C and 37°C were then 
fixed and processed for immunofluorescence staining as described in materials and 
methods.  
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Figure 21. Quantitation of internalization of the LPA1 receptor.  
Internalized antibody bound to the LPA1 receptor was quantified using Simple PCI 
software as described in materials and methods. Internalization was expressed as the 
percent of receptor associated antibody following acid wash, relative to the total 
fluorescence of surface bound antibody of the 4°C control. * p<0.05  
   
 
 
 
 
 
 
 
 
 

*
*
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After treatment with 10µM LPA for 30 minutes, the anti-HA antibodies bound to the 

LPA1 receptor localized to punctate endosomal structures (Figure 20, -Bis I/ 37°C LPA) 

that have been previously shown to co-localize with transferrin-positive endosomes (183, 

214). This internal pool of LPA1 receptors after LPA treatment represents about 30% of 

the 4°C untreated (-Bis I) control (Figure 21, 37°C LPA/white bar). Treatment with 1µM 

PMA also led to a predominantly endosomal localization of the anti-HA antibodies bound 

to the LPA1 receptor (Figure 20, - Bis I/ 37°C PMA), which represents ~22% of the 4°C 

untreated (-Bis I) control (Figure 21, 37°C PMA/white bar). A 30 minute pre-exposure 

with 5µM Bisindolylmaleimide I (+Bis I), a classical PKC inhibitor, blocked basal 

internalization (~60% reduction) (Figure 20, + BisI/ 37°C untreated and Figure 21, 37°C 

Untreated/black bar) as well as PMA-induced internalization (~80% reduction) (Figure 

20, +Bis I/ 37°C PMA and Figure 21, 37°C PMA/black bar) of the mouse anti-HA 

antibodies bound to the LPA1 receptor. Bis I pre-exposure did not completely inhibit 

LPA-induced internalization but reduced it to ~20% of the 4°C untreated (+ Bis I) control 

(Figure 20, +Bis I/37°C LPA and Figure 21, 37°C LPA/black bar). To confirm if 

antibody binding itself did not cause internalization of the LPA1 receptor, we repeated the 

above experiments wherein the anti-HA antibodies were bound to the receptor after all 

acute treatments and fixing the cells in 2% PBS-formaldehyde. We observed a similar 

trend as the results in Figure 1 (data not shown). These results suggest that both PMA-

induced and basal internalization are PKC-dependent and most likely follow a similar 

pathway of internalization, whereas inhibition of PKC has a partial effect on LPA-

induced internalization. 
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9.2 A serine rich region in the tail of the LPA1 receptor is required for signal 
desensitization  
 

Clusters of serine residues on GPCRs have been shown to be important for agonist-

dependent interaction with β-arrestins (51, 65). We had previously shown that the LPA1 

receptor forms a transient interaction with β-arrestins at the plasma membrane and is 

required for signal desensitization (214). The LPA1 receptor has a serine cluster between 

amino acids 340 and 347, so we asked the question if this serine cluster is required for β-

arrestin association and subsequent signal desensitization and internalization. We 

generated HA-tagged truncation mutant LPA1 receptors as described in materials and 

methods. The HA-tagged wild-type and mutant receptors were functional as determined 

by a phosphoinositide hydrolysis assay (see materials and methods), which measures 

Gαq-dependent signaling upon LPA stimulation (Figure 23) (182, 214). We observed 

that in comparison to wild-type LPA1 receptor, the LPA1 ∆340 mutant showed elevated 

levels of accumulation of [H3] inositol phosphates in response to LPA stimulation, 

suggesting that it fails to desensitize Gαq signaling (Figure 23). In contrast, the ∆347 

LPA1 receptor showed reduced levels of [H3] inositol phosphate accumulation as 

compared to the ∆340 LPA1 receptor, although compared to wild-type levels the ∆347 

LPA1 receptor still showed elevated [H3] inositol phosphate accumulation. The ∆353 

LPA1 receptor mutant showed further reduced levels of [H3] inositol phosphate 

accumulation compared to the ∆340 LPA1 mutant receptor. The ∆361 mutant that lacks 

the PDZ binding domain showed reduced levels of [H3] inositol phosphate accumulation 

as compared to the wild-type LPA1 receptor.  
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Figure 22. Schematic diagram of the LPA1 receptor tail mutants 
 
The uppermost sequence is the wild-type amino-acid sequence of the LPA1 receptor tail 
describing the various motifs in the tail. The LPA1 truncation mutants are shown with a ∆ 
symbol, with their sequences ending in premature stop codons (*). 
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These results suggest that the region between residues 340-347 are critical for signal 

desensitization and therefore could also play a role in β-arrestin interaction and 

subsequent internalization of the LPA1 receptor. 

 

9.3 Different motifs in the tail of the LPA1 receptor are required for LPA- versus 
PMA-dependent internalization 
 
 The results from Figure 23 suggested that the serine rich region between residues 

340-347 might be critical for signal desensitization and therefore β-arrestin interaction 

and subsequent internalization. We next sought to determine whether the serine rich 

region was required for LPA-dependent internalization. HeLa cells were transiently 

transfected with different HA-tagged LPA1 receptors as described in Figure 24 and were 

exposed to 10 µM LPA or 1µM PMA for 30 minutes. We measured internalization of the 

HA-tagged WT and mutant LPA1 receptors similar to Figure 21. In the 4°C untreated 

control cells expressing WT or mutant LPA1 receptors, the mouse anti-HA antibody 

bound to the receptor showed predominant plasma membrane localization (data not 

shown). As in Figure 21, the internalization is expressed as a percentage of the initial 

antibody bound in the 4°C untreated control cells. The wild-type LPA1 receptor 

internalized (16% of 4°C untreated control) in response to LPA stimulation (Figure 24, 

WT/LPA and Figure 25, WT/black bars), whereas the ∆340 LPA1 receptor, which lacks 

the serine rich region, showed a ~75% reduction in internalization in response to LPA 

treatment (Figure 24, 340/LPA and Fig 25, 340/black bar). 
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 Figure 23. The serine cluster is required for LPA-dependent signal desensitization 

HeLa cells were transiently transfected with plasmids encoding either wild-type LPA1 
(WT) or truncated mutant LPA1 (∆340-∆361) receptors. The cells were processed as 
described in materials and methods, prior to incubation in the absence (Untreated) or 
presence (10µM LPA) of agonist for 1 hour. After solubilization, the radioactively 
labeled inositol phosphates were isolated as described previously (182). The radioactivity 
recovered in the different samples was normalized to both total cellular protein and total 
receptor surface expression as determined by western blot (data not shown). The data are 
presented as the mean±s.e.m. of triplicate measurements from a representative 
experiment that was repeated three times. * p<0.05 – compare LPA stimulated condition 
for ∆340 with ∆347 and ∆353. 
 

*

*
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In contrast, the ∆347, ∆353 and ∆361 mutants that have the serine rich region internalized 

comparable to wild-type levels (~12% of 4°C untreated control) (Figure 24, and Figure 

25, 347,353,361/black bars). In addition to LPA stimulation, we also tested the effects of 

PMA treatment on the different mutant LPA1 receptors. The wild-type receptors 

internalized (~10% of 4°C untreated controls) in response to 1µM PMA treatment for 30 

minutes (Fig 24 and Figure 25, WT/grey bar). In contrast to LPA treatment, both ∆340 

and ∆347 failed to internalize upon PMA treatment (Fig 24 and Figure 25, 340,347/grey 

bar). Interestingly, ∆353 and ∆361 both of which have a dileucine motif, internalized in 

response to PMA treatment (Fig 24 and Figure 25, 353,361/grey bar). Similar to PMA 

treatment, we observed that basal internalization of the LPA1 receptor required the 

dileucine motif. The wild-type LPA1 receptor displayed basal internalization (Fig 25, 

WT/white bar), whereas the ∆340 and ∆347 mutant LPA1 receptors did not exhibit any 

basal internalization (Fig 25, 340,347/white bars). Similar to PMA treatment the ∆353 

and ∆361 LPA1 receptors exhibited basal internalization (Fig 25, 353,361/white bars). 

These results suggest that the serine rich region is required for LPA-dependent 

internalization, whereas the dileucine motif is required for basal and PMA-dependent 

internalization. 
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Figure 24. Different motifs are required for LPA-induced versus PMA-induced 
endocytosis 
HeLa cells were transfected with the wild-type (WT) and mutant (∆340-∆361) HA 
tagged- LPA1 plasmids as described in the materials and methods. The surface receptors 
were labeled with mouse anti-HA antibody (Covance) at 4°C for 1hour. The cells were 
either left at 4°C or transferred to 37°C. The cells at 37°C were then treated with or 
without either 10µM LPA or 1µM PMA for 30min at 37°C. After the antibody-receptor 
complexes were allowed to internalize, surface bound antibodies were removed by mild 
acid wash and the cells were fixed and processed for immunofluorescence staining as 
described in materials and methods.  
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Figure 25. Quantitation of internalization of the mutant LPA1 receptors 
Internalized antibody bound to the LPA1 receptor was quantified using Simple PCI 
software as described in materials and methods. Internalization was expressed as the 
percent of receptor associated antibody following acid wash, relative to the total 
fluorescence of surface bound antibody of the 4°C control. * p<0.05 – compare Wild-
type (WT) to mutants.  
   
 

*

*
*

* *
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9.4 The serine rich region is critical for β-arrestin association 

Having established that the serine rich region is critical for signaling 

desensitization and internalization of the LPA1 receptor, we next sought to determine if 

the serine rich region is required for β-arrestin interaction. We had previously shown that 

in cells expressing the LPA1 receptor, β-arrestin2 GFP translocates to the plasma 

membrane upon brief LPA stimulation and that it co-localizes with the LPA1 receptor 

(214). HeLa cells were co-transfected with different HA-tagged LPA1 receptors and β-

arrestin2 GFP as shown in Fig 26A. In cells expressing the wild-type LPA1 receptor, β-

arrestin2 GFP translocated to the plasma membrane after 2 minutes of 10µM LPA 

stimulation (Figure 26A inset, WT/β-arrestin2 GFP), whereas in the cells expressing 

∆340 LPA1 mutant receptor β-arrestin2 GFP failed to translocate to the plasma 

membrane (inset, 340/β-arrestin2 GFP). As expected, in the cells expressing the ∆347, 

∆353 and ∆361 LPA1 receptor mutants, β-arrestin2 GFP translocated to the plasma 

membrane (Figure 26A inset - 347, 353, 361/β-arrestin2 GFP). We quantified β-arrestin2 

GFP translocation to the plasma membrane in cells after 2 minutes of LPA stimulation 

(Figure 26B). In the cells expressing the WT LPA1 receptor, β-arrestin2 GFP translocated 

to the PM in ~90% of the cells. By contrast, in the cells expressing the ∆340 LPA1 

receptor, β-arrestin2 GFP translocated to the PM in only 10% of the cells. Expectedly, β-

arrestin2 GFP translocated to the PM in 70% of the cells expressing the ∆347 LPA1 

receptor. In the cells expressing the ∆353 and ∆361 LPA1 receptors, β-arrestin2 GFP 

translocated to the PM in ~90% of the cells. Together these results suggest that the serine 

rich region is required for β-arrestin interaction with the LPA1 receptor. 
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Figure 26. The serine box is required for β-arrestin 2 GFP translocation to the 
plasma membrane. 
a) HeLa cells were co-transfected with the wild-type (WT) or mutant (∆340-∆361) HA- 
LPA1 and β-arrestin2 GFP plasmids as described in the materials and methods. Surface 
receptors were labeled with mouse anti-HA at 4°C for 1hour. The cells were washed and 
then incubated in the absence (data not shown) or presence of 10µM LPA for 2min at 
37°C. The cells were fixed and processed for immunofluorescence as described in 
materials and methods. The inset shows a magnified image of the boxed region. 
b) Quantitation of β-arrestin2 GFP translocation to the PM after 2 minutes of LPA 
stimulation. 100 cells were scored for each receptor construct.  
. 

A 

B 
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9.5 PMA induced internalization of the LPA1 receptor is β-arrestin independent 
 
 The results from Figure 26 and previous studies (214) conclusively showed that 

upon LPA treatment for 2 minutes, β-arrestin2 GFP translocates to the plasma membrane. 

We next sought to determine if PMA treatment also caused β-arrestin2 GFP to 

translocate to the plasma membrane. As shown previously, in untreated cells (0 minutes) 

the LPA1 receptor had a predominantly plasma membrane distribution, whereas β-

arrestin2 GFP had a diffuse cytoplasmic distribution as determined by 

immunofluorescence. Upon treatment with 10µM LPA for 2 minutes, both the LPA1 

receptor and β-arrestin2 GFP co-localized to punctate structures at the plasma membrane 

(Figure 27, 2minutes/LPA). Prolonged exposure to LPA for 30 minutes led to an 

intracellular endosomal distribution of the LPA1 receptor and β-arrestin2 GFP returned 

back to the diffuse cytoplasmic staining as in the untreated cells (Figure 27, 30 

minutes/LPA). In contrast, upon treatment with 1µM PMA for 2min, β-arrestin2 GFP did 

not translocate to the plasma membrane (Figure 27, 2minutes/PMA). These results 

suggested that β-arrestin2 GFP does not interact with the receptor upon PMA treatment.  

 To confirm that the PMA induced internalization of the LPA1 receptor is β-

arrestin independent, we investigated if the LPA1 receptor internalizes in the Mouse 

Embryo Fibroblasts (MEF’s) derived from β-arrestin 1/2 double knockout mice. We 

transfected both MEF’s derived from wild-type mice (MEF WT) and MEF’s derived 

from β-arrestin 1/2 KO mice (MEF KO), with the wild-type HA-tagged LPA1 receptor. 

As shown in Figure 28, in the 4°C untreated MEF WT cells the mouse anti-HA antibody 

bound to the LPA1 receptor showed a predominantly plasma membrane distribution 

(Figure 28, MEF WT/ 4°C untreated).  
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Figure 27. β-arrestin 2 GFP translocation to the plasma membrane is induced by 
LPA but not PMA treatment. 
HeLa cells were co-transfected with the wild-type (WT) HA- LPA1 and β-arrestin2 GFP 
plasmids as described in the materials and methods. Surface receptors were labeled with 
mouse anti-HA at 4°C for 1hour. The cells were then incubated in the absence (0 min) or 
presence (for 2min or 30min) of either 10µM LPA or 1µM PMA at 37°C. The cells were 
fixed and processed for immunofluorescence as described in materials and methods. 
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Upon treatment with 10µM LPA or 1µM PMA for 30 minutes, the antibody bound to the 

LPA1 receptor localized to internal endosomal structures (Figure 28, MEF WT/ 37°C 

LPA or PMA). By contrast, in the β-arrestin MEF KO cells, upon LPA treatment the 

antibody bound to the LPA1 receptor failed to internalize (Figure 28, MEF KO/ 37°C 

LPA), whereas it internalized after PMA treatment (Figure 28, MEF KO/ 37°C PMA). 

Taken together, these results suggest that the PMA induced internalization of the LPA1 

receptor is β-arrestin independent and probably utilizes an alternate adaptor protein.  

 

9.6 AP-2 is required for agonist-independent internalization 

The results from Figure 25-28 suggested that PMA-induced internalization of the LPA1 

receptor requires a dileucine-based motif and is β-arrestin independent. We next sought 

to determine the alternate adaptor protein that could be utilized by the LPA1 receptor for 

agonist-independent internalization. Several studies have shown that tyrosine- and 

dileucine-based motifs can interact with the adaptor protein AP-2 and mediate 

internalization (47). We have shown that agonist-independent internalization of the LPA1 

receptor does not require β-arrestins but requires a dileucine-based motif (Figure 4 and 

5). Therefore, we asked the question if AP-2 was the alternate adaptor protein required 

for agonist-independent internalization of the LPA1 receptor. We employed the use of 

siRNA-mediated reduction of AP-2 protein levels to determine if AP-2 is required for 

agonist-independent internalization. In the untreated cells ~16% of the LPA1 receptor 

internalized, which represents basal levels of internalization (Figure 29, 

untreated/siControl). Basal internalization of the LPA1 receptor was inhibited by ~85% 

after siRNA-mediated knockdown of endogenous AP-2 levels (Figure 29, 
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untreated/siAP2). Similarly, siAP2 treatment led to a ~86% decrease in PMA-induced 

internalization of the LPA1 receptor (Figure 29, PMA/siAP2). Interestingly, LPA-induced 

internalization of the LPA1 receptor was partially inhibited by siAP2 treatment leading to 

a ~50% inhibition (Fig 29, LPA/siAP2). These results were similar to those observed 

when experiments were performed with Bisindolylmaleimide I (Figure 21). Taken 

together these results would suggest that agonist-independent internalization of the LPA1 

receptor requires AP-2 and could be regulated by PKC. 
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Figure 28. PMA induced LPA1 internalization is β-arrestin independent 
MEF WT or MEF β-arrestin 1/2 KO cells were transfected with the wild-type (WT) HA- 
LPA1 plasmid as described in the materials and methods. Surface receptors were labeled 
with mouse anti-HA antibody (Covance) at 4°C for 1hour. The cells were washed and 
were either left at 4°C or transferred to 37°C. The cells at 37°C were then treated with or 
without either 10µM LPA or 1µM PMA for 30min at 37°C. After the antibody-receptor 
complexes were allowed to internalize, surface bound antibodies were removed by mild 
acid wash and the cells were fixed and processed for immunofluorescence staining as 
described in materials and methods.  
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Figure 29. Agonist-independent internalization of the LPA1 receptor requires AP-2 

a) Stably transfected LPA1/HeLa cells were treated with control siRNA (siControl) 
or AP-2 siRNA (siAP2) as described in materials and methods. Surface receptors 
were labeled with mouse anti-HA antibody (Covance) at 4°C for 1hour. The cells 
were washed and were either left at 4°C or transferred to 37°C. The cells at 37°C 
were then incubated in the absence (untreated) or presence of either 10µM LPA or 
1µM PMA for 30min at 37°C. After the antibody-receptor complexes were 
allowed to internalize, the remaining surface bound antibodies were removed by 
mild acid wash. The cells at both 4°C and 37°C were then fixed and processed for 
immunofluorescence staining as described in materials and methods. Internalized 
antibody bound to the LPA1 receptor was quantified using Simple PCI software as 
described in materials and methods. Internalization was expressed as a percent of 
the total fluorescence of surface bound antibody of the 4°C control. * p<0.05 

b) Stably transfected LPA1/HeLa cells were transfected with control siRNA 
(siControl) or AP-2 siRNA (siAP2) and were stained for AP-2 as described in 
materials and methods. 

c) Cell lysates were prepared from LPA1/HeLa cells that were transfected with 
control siRNA (siControl) or AP-2 siRNA (siAP2), separated by SDS-PAGE and 
were immunoblotted for AP-2 as described in materials and methods. 

A 

B C 

*

* *
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CHAPTER 10 
 

DISCUSSION 

 

The LPA1 receptor (EDG-2) is the most widely expressed receptor of the 

Endothelial Differentiation Gene (EDG) family and has been shown to be expressed in a 

variety of tissues like the heart, colon, brain, and placenta (88, 110). The LPA1 receptor 

has been shown to be responsible for the migratory potential of multiple cancer cell lines 

(124, 143, 221, 222).  Regulation of receptor expression on the cell surface via trafficking 

mechanisms, is important in maintaining responsiveness to extracellular signals such as 

chemotactic attractants (24, 143, 223).   

In this study, we examined the role of distinct motifs in the LPA1 receptor tail on its 

trafficking. Here we show that basal and PMA-induced internalization of the LPA1 

receptor is regulated by a dileucine motif in the tail region in an AP-2 dependent manner 

and is inhibited by a PKC inhibitor, Bisindolylmaleimide I. In contrast, LPA-induced 

internalization of the LPA1 receptor is regulated by a cluster of serine residues in the tail 

region, in a β-arrestin-dependent manner.  

 Several studies have shown a role for PKC phosphorylation in the desensitization 

and internalization of GPCRs like the purinergic P2Y1, Sphingosine-1-phosphate S1P1 

and Gastrin-releasing peptide receptor (15, 224-226). A previous study showed that in rat 

hepatocytes, a GFP-tagged LPA1 receptor can be phosphorylated by PKC after treatment 

with phorbol 12-myristate 13-acetate (PMA), leading to its internalization (207). Our 

results indicate that in LPA1/HeLa cells the LPA1 receptor internalizes upon treatment 

with PMA (Figure 20B PMA/white bar), which is inhibited by the PKC inhibitor 
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Bisindolylmaleimide I (Bis I) (Figure 20B PMA/black bar). Additionally, the LPA1 

receptor undergoes basal internalization (Figure 21, untreated), which is also PKC-

dependent as it is sensitive to Bis I treatment. Upon treatment with LPA, ~30% of the 

surface LPA1 receptor internalizes into endosomes (Figure 21, LPA) but pre-treatment 

with Bis I, prior to LPA stimulation, did not completely inhibit internalization but 

reduced it to about ~20% as compared to ~30% in the control. Upon LPA stimulation, the 

LPA1 receptor can activate Gαq and phospholipase C and subsequently activate PKC 

thus raising the possibility that PKC has a feedback inhibitory mechanism. Additionally, 

certain studies have shown that PKC inhibitors can inhibit the activity of adaptor 

associated kinase-1 (AAK1), which phosphorylates the µ-subunit of AP-2, inhibiting 

internalization (227).   

 We have previously shown that LPA-dependent internalization of the LPA1 

receptor is β-arrestin and clathrin-dependent (214). Previous studies have suggested that 

agonist-independent internalization of certain GPCRs do not require β-arrestin but utilize 

an alternative adaptor protein, AP-2, which can target receptors to Clathrin Coated Pits 

(CCPs) for internalization (33). Our studies suggest that PMA-induced internalization of 

the LPA1 receptor does not require β-arrestin since PMA readily induced internalization 

of LPA1 receptors in the β-arrrestin 1/2 KO MEF cells (Figure 28). Unlike LPA 

stimulation, we observed that PMA treatment did not induce β-arrestin translocation to 

the plasma membrane (Figure 27). These results collectively suggest that PMA-induced 

internalization is β-arrestin independent.  

β-arrestin dependent internalization has been shown to require clusters of serine 

residues on GPCR tails for their association (51, 65). On analyzing the LPA1 receptor tail 
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we found a serine rich region between residues 340 and 347. Our studies indicate that 

indeed, the serine rich region (340-347) is required for β-arrestin translocation to the 

plasma membrane upon brief LPA stimulation (Figure 26). It is known that β-arrestins 

are required for both signal desensitization as well as endocytosis of GPCRs (17, 228). 

Indeed, the serine rich region (340-347), as expected, was also required for LPA-

dependent internalization of the LPA1 receptor (Figure 25, LPA). Just as in endocytosis, 

GPCRs that are faulty in their β-arrestin binding abilities, fail to desensitize. As expected, 

the serine rich region is critical for signal desensitization as determined by the 

observation that the mutant LPA1 receptor lacking the serine rich region (∆340) has 

elevated levels of phosphoinositide hydrolysis as compared to those receptors that 

contain the serine rich region (Figure 23). Thus LPA1, which is a Class A GPCR as 

defined by Oakley et. al (31), requires a cluster of serine residues for LPA-dependent 

transient β-arrestin association and subsequent internalization.    

 We also observed that the LPA1 receptor tail has two dileucine motifs, one 

proximal and one distal to the trans-membrane domain. The proximal dileucine motif 

precedes a dicysteine motif, which is a potential palmitoylation site. Previous studies 

have shown that dileucine motifs preceding dicysteine motifs are important in regulating 

ER to Golgi transport (48, 229). Hence, we decided to pursue the distal dileucine motif 

for our studies. Dileucine motifs have also been shown to be critical in PKC-dependent 

endocytosis of GABA receptors (61, 230). We had observed in Figure 21 that both 

constitutive and PMA-induced internalization are PKC-dependent. Studies with 

truncation mutant LPA1 receptors showed that upon PMA stimulation, mutant LPA1 

receptors that lack the dileucine motif (∆340, ∆347) fail to internalize, whereas mutant 
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LPA1 receptors that have the dileucine motif internalize like wild-type LPA1 receptors 

(Figure 25). In contrast, the dileucine motif does not seem to be required for LPA-

dependent internalization. As in the case of PMA stimulation, basal internalization also 

seems to depend on the dileucine motif for internalization (Figure 25, Untreated). Taken 

together these results confirm the observations in Figure 21 and suggest that both basal 

and PMA-induced internalization follow a similar PKC- and dileucine motif-dependent 

pathway. Studies with another EDG family GPCR, S1P1 (EDG-1), have shown that this 

receptor utilizes two distinct mechanisms, GRK-dependent and PKC-dependent 

mechanisms, to regulate agonist-dependent and agonist-independent internalization, 

respectively (15). Our studies show that the LPA1 (EDG-2) receptor also utilizes two 

distinct mechanisms for agonist-dependent versus agonist-independent internalization. 

Lysophospholipid receptors (LPA and S1P) have been shown to induce diverse cellular 

responses such as proliferation, migration, differentiation and survival (116).  

Certain types of ovarian cancer over-express the LPA2 receptor but not the LPA1 

receptor (231). In fact, restoring expression of LPA1 in ovarian cancer cells causes 

apoptosis and anoikis (139). Additionally, a study showed that the LPA2 receptor is a 

more potent activator of Gαq as compared to the LPA1 receptor (180). It would be of 

great interest to determine if the LPA2 receptor causes heterologous desensitization of the 

LPA1 receptor in these cancer cells and the role of the LPA1 dileucine-based motif in this 

context.  

 Previous studies have shown that GPCRs that internalize in an agonist-

independent manner can utilize AP-2 as an adaptor protein and that tyrosine- and 

dileucine-based motifs on these receptors can interact with AP-2, mediating 
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internalization (47, 54, 232). Therefore we tested to see if AP-2 is required for agonist-

independent internalization of the LPA1 receptor. Treatment with siRNA to reduce AP-2 

expression levels resulted in a ~ 90% decrease in both basal and PMA-induced 

internalization (Figure 28, untreated, PMA/siAP2), suggesting that both PMA-induced 

and basal internalization utilize a similar AP-2 dependent pathway of internalization. 

LPA-induced internalization was also partially inhibited by siAP-2 treatment (Figure 28, 

LPA/siAP2). This partial inhibition is due to the fact that siRNA-mediated reduction of 

AP-2 has been shown to cause a 10-fold decrease in the number of clathrin-coated pits at 

the plasma membrane (185). Therefore, these results suggest that AP-2 is not necessary 

for LPA-induced internalization and utilizes an alternate adaptor protein, β-arrestin, for 

internalization. 

 GPCRs like the LPA1, CXCR4, and PAR1 are constitutively internalized and 

either have tyrosine- or dileucine-based motifs on their tails and confer a migratory 

potential to cells that express them. Is there a correlation between tyrosine- or dileucine-

based motifs, constitutive internalization, and cell migration? Do other GPCRs that 

constitutively internalize and have tyrosine- or dileucine-based motifs, confer migratory 

potential to cells that express them? If indeed the hypothesis that regulation of receptor 

expression and turnover by basal internalization can affect cell migration towards a 

chemo-attractant like LPA is true, then the cells in which receptors fail to basally 

internalize (∆340, ∆347 – LPA1) should fail to migrate. It would be of great physiological 

importance if indeed basal internalization is a mechanism that regulates cell migration. 

Further studies need to be done to determine the role of basal trafficking of receptors and 

their effect on cell migration in different contexts. 
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CHAPTER 11 

FUTURE DIRECTIONS 

 

Having deduced the molecular determinants for agonist-independent 

internalization, the next question that arises is what is the physiological relevance of 

agonist-independent internalization? Several studies have suggested that constitutive 

trafficking may play a role in the differential spatial expression of GPCRs. Studies with 

the UNC5A receptor in neurons have shown that constitutive trafficking is required for 

targeting the receptor to the axonal regions and inhibition of constitutive trafficking leads 

to mislocalization of the receptor to the cell body. Thus constitutive trafficking of the 

LPA1 receptor could also play a role in its spatial localization on the plasma membrane 

and thereby contribute to perceiving extracellular signals that are also spatially oriented. 

This might not be relevant to a cell culture system but very relevant to an in vivo system, 

as cells in vivo are generally polarized or have different spatial orientations relative to 

their external environment. It is known that the LPA1 receptor confers migratory potential 

to cells that express it. Further studies need to be done to elucidate the role of the LPA1 

dileucine motif and AP-2 in cell migration towards a chemoattractant. Based on the 

studies with PMA-induced internalization of the LPA1 receptor it has been suggested that 

this LPA1 internalization can be a result of heterologous desensitization. Thus studies 

need to be done where the LPA1 receptor is co-expressed with another Gαq-coupled 

receptor to determine if activation of one receptor leads to the internalization of the other.   
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APPENDIX A 
 

PROTOCOLS  
 

Splitting Mammalian Cells  
 
1. Rinse cells with 1 mL trypsin-EDTA.  
2. Add 2 mL trypsin and incubate for 1-2 minutes to loosen cells.  
3. Add 3 mL complete media to cells and pipet cells 10 times to get uniform suspension.  
4. Place 10 mL fresh, warm media into a new 10 cm dish.  
5. Add 0.4-0.6 mL suspended cells to new flask to get a 1:10 dilution.  
  
 
Plating Mammalian Cells  
 
1. Place several acid washed coverslips into a 10 cm petri dish.  
2. Pour 70% EtOH over the coverslips.  
3. Flame 4-5 slips at a time very quickly and then let air dry for a few seconds. (Make 
sure that all EtOH is evaporated or cells will not grow on the slip.)  
4. Place ~20 slips in a sterile tissue petri dish for plating.  
5. Place 10 mL of complete media into the petri dish.  
6. Add a few drops of suspended cells (from flask spilt) to the dish.  
7. Add appropriate drug/inhibitor and place in CO2 incubator overnight to do transfection 
next afternoon. If cells are plated early in morning, then they can be transfected that same 
evening. 
  
Lipofectamine Transfection  
 
For a transfection in a 24- well dish:  
1. Plate 40,000 HeLa cells in complete media into each well for ~24 h.  
2. The following day, change the media to OptiMEM serum free medium in each well.  
3. For each transfected row (6 wells total/row) dilute a total of 1.0 µg/well of DNA into 
300µl serum-free media into one labeled tube. Repeat for each row.  
4. Incubate the mixture for 5 min.  
5. Dilute lipofectamine into another labeled tube at the ratio (0.4µg DNA: 1µl 
lipofectamine) with 300 µl serum-free media.  
6. Immediately combine the tube with DNA and the tube with lipofectamine and incubate 
the mixture for 20-45 min.  
7. Add 100 µl of the mixture into each well of the 24-well plate.  
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Lipofectin Transfection  
 
For a Transfection in a 6 Well Dish:  
 1. Plate cells to get recommended cell density of 40-60% confluent on day of 

transfection.  
 2. For each transfection:  

a. dilute 1 µg of DNA into 100 µl OptiMEM media into 1 labeled tube  
b. dilute 2 µl (per 1 µg plasmid) Lipofectin into 100 µl of OptiMEM media into 1 
labeled tube  

3. Let stand at room temperature for 30 – 45 min.  
4. Combine the two solutions and let stand for 15 min at room temperature.  
5. Wash cells in 6 well once with 2 mL OptiMEM and replace with 1.8 mL OptiMEM.  
6. Add DNA/Lipofectin mix to the well and place in 37°C incubator for 4-6 h.  
7. Replace the DNA containing media with DMEM media – antibiotics and return to 

incubator for 48-72 h.  
 
ExGen 500 in vitro Transfection  
 
Considerations:  

 1. High quality DNA of 1.8 OD ratio or higher is recommended.  
 2. Recommended cell density is around 50% at time of transfection.  
 3. Optimal detection of transfection determined by a reporter gene.  
 4. Transfection efficiency is higher in the presence of serum w/o antibiotics.  

 
Day 1: Seed 0.45x 10

6 
HeLa cells (density depends on cell type) in a 10 cm dish 

containing complete DMEM (-antibiotics).  
Day 2: Transfect in the morning. Prior to transfection, transfer coverslips to a 6-well plate 
containing 2 mL of complete DMEM (-antibiotics).  
Day 3: Change the media.  
Day 4: Perform the assay.  
Day 2: Procedure for 6-well plate: Use 1 µg :3.3 µl ratio of DNA to Ex-Gen.  
 1. Dilute recommended amount of DNA (Total 2.0 µg/6-well) into 200 µl of 150 
mM NaCl.  
 2. Vortex briefly and spin down.  
 3. Add 7.0 µl of ExGen500 to DNA solution and immediately vortex for 10 sec.  
 4. Incubate at room temperature for 10 min.  
 5. Add the ExGen500/DNA mixture to one well of 6-well plate and place on 
shaker for 5 min.  
 6. Incubate for 24 h and change media following day.  
 7. Assay 48 h after transfection.  
 
Indirect Immunofluorescence  
1. Day 1: Grow cells on 12 mm acid-washed No. 1 circle glass coverslips in a 10 cm dish. 
Coveslips should sit in 70% ETOH. Flame coverslips prior to use and transfer to 10cm 
dish. Density of cells depends on cell type. (HeLa – 0.45x10

6
; MEFs – 1.0x10

6
)  
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2. Day 2: Transfer individual coverslips to the wells of a 24, 12, or 6-well dish that 
contains the appropriate amount of media. Begin transfection protocol.  
3. Day 3: Remove media and replace with serum free or complete media.  
4. Day 4: Treat as required for experimental protocol.  
5. Transfer coverlslip to one well in a 12-well dish containing 1 mL of 2% formaldehyde 
in PBS pH 7.4.  
 a. 2% formaldehyde in PBS  

 i. Add 27 mL of 37% formaldehyde stock into a graduated cylinder.  
 ii. Fill to 500 mL with PBS pH 7.4  

6. Incubate for 10 min at room temperature (RT).  
7. Remove fixative and add 1 mL of 10% Adult calf serum in PBS (PBS/serum/azide)and 
incubate for 5 min at room temperature. This can be stored overnight at 4°C.  

PBS/serum  
i. Add 50 mL of calf serum to 500 mL graduated cylinder.  
ii. Add 0.5 mL of 20% sodium azide stock soln.  
iii. Fill to 500 mL with PBS pH 7.4  

8. Dilute primary antibodies into PBS/serum containing 0.2% saponin and spin for 5 min 
at 14,000 rpm.  

PBS/serum + 0.2% saponin  
i. Add 20 µl of 10% saponin stock (made in dH

2
O) to microfuge tube  

ii. Add 980 µl of PBS/serum for a total of 1 mL.  
9. Place a piece of parafilm in the bottom of a 150 mm petri dish and label with numbers 

corresponding to 12-well dish.  
10. Add 25 µl of the appropriate diluted antibody solution to each spot on the parafilm.  
11. Pick up individual coverslips with tweezers and wick excess fluid on paper towel.  
12. Invert coverslip onto antibody drop (i.e. cell side down), cover dish and incubate in a 

bench drawer for 1 h.  
13. Carefully transfer coverslip, cell-side up, back into 12-well dish.  
14. Wash coverslips with 1 ml PBS/serum (3 x for 5 min).  
15. Dilute fluorescently-labeled secondary antibodies in PBS/serum + 0.2% saponin and 

spin for 5 min at 14,000 rpm.  
16. Invert coverslips onto 25 µl drops of antibody on parafilm as described above and 

incubate for 1 h.  
17. Wash coverslips 3 x 5 min with PBS/serum.  
18. Rinse coverslips with PBS alone and mount onto glass slides with fluoromount G and 

seal with nail polish.  
 
 
Metamorph Co-localization  
 
1. Open and load image of interest  
Deconvolute images prior to quantitation  
2. Process Menu  
Select “2D deconvolution”  
Click nearest neighbor and Apply (adjust if needed)  
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Display color combine  
3. Display Menu  
Select “Color Separate”  
Click red, green or blue ---“new”  
4. Select rectangle box in Regions tools and place in Blank region of image  
5. Regions Menu  
Select “Transfer Region” to place blank in all colors of image  
6. Measure Menu  
Select “Show Region Statistics”  
*the “Use Threshold” box should NOT be checked  
*region around box should be blinking (active)  
*Add the sum of average and standard deviation computed for each color  
image. Record measurements for each color.  
7. Measure Menu  
Select “Threshold Image”  
*Make sure State is Off  
Insert the values derived from previous step into the “Low Intensity” box  
8. Region Tools  

Select line or box tool to mark the areas of image to analyze. Double click to 
activate.  

9. Regions Menu  
With image outline blinking, select Transfer Region  
Transfer outline of interest to all the color images separated earlier  
10. Measure Menu  
Select “Show Region Statistics”  
*Check the “inclusive” box for each color of the image  

* Add the sum of the average and standard deviation computed  
11. Measure Menu  
Select “Threshold Image”  
*input the sum calculated above into the “Low intensity” box  
12. Applications Menu  
Select “Measure colocalization”  
*set image to “A” or “B” as appropriate  
*check the “show percentage box”  
*log into Excel spreadsheet  
 
 
Loss of Surface receptor (LOSR) Quantitation Assay  
 
1. Grow cells directly on bottom of wells that contain 1 mL media. (this works best at 
150,000 cells per well).  
2. Treat as required for experimental protocol.  
3. Remove medium and fix cells with 1 mL of 2% formaldehyde in PBS pH 7.4.  

2% formaldehyde in PBS  
 i. Add 27 mL of 37% formaldehyde stock into a graduated cylinder.  
 ii. Fill to 500 mL with PBS pH 7.4  
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4. Incubate for 10 min at room temperature (RT).  
5. Remove fix and add 1 ml of 10% Adult calf serum in PBS (PBS/serum) and incubate 
for 5 min at room temperature. This can be stored overnight at 4°C.  

PBS/serum  
i. Add 50 mL of calf serum to 500 mL graduated cylinder.  
ii. Fill to 500 mL with PBS pH 7.4  

6. Dilute primary antibodies into PBS/serum without saponin and spin for 4 min at 
14,000 rpm.  

 b. Mouse anti Flag use at 1:750. (stock = 2-5 mg/ mL)  
 c. ConA Biotin use at 1:750. (stock = 5 mg/ mL) (used at 5 µg/ mL) 
(Vector Laboratories, B-1005)  

7. Remove the PBS serum from the wells.  
8. Add 250 µl of primary antibody to each well.  
9. Cover dish and incubate in drawer for 45 min.  
10. Wash cells with 1 ml PBS/Serum (3 x 3 min).  
11. Dilute fluorescently-labeled secondary antibodies in PBS/serum without saponin  

and spin for 4 min at 14,000 rpm.  
 d. Goat anti Mouse HRP Conjugate use at 1:1000. (stock = 0.8 mg/mL) (used at 
0.3 µg/mL) (Promega, W4021)  
 e. AP Streptavidin use at 1:1000. (stock = 1 mg/mL) (used at 5 µg/mL) (Alkaline 
Phosphatase Streptavidin, SA-5100, Vector Laboratories)  
12. Remove the PBS Serum and add 250 µl secondary antibody to each well.  
13. Cover and incubate in bench drawer for 45 min.  
14. Wash cells with 1 mL PBS/Serum (3 x 3 min).  
15. Aliquot out approximate amount of 1 Step ABTS necessary and warm it up in dH

2
O 

bath, keeping stock bottle in fridge. (Pierce, 37615)  
16. Rinse cells with 1 mL 1 X PBS alone for 5 min.  
17. Aliquot out approximate amount of pNPP/Sodium Bicarbonate  

pNitroPhenylPhoshate (pNPP) (vector Laboratories, SK5900)  
add 5 drops per 2 mL of 100 mM Sodium Bicarbonate  

100 mM Sodium Bicarbonate  
75 ml dH

2
O  

0.84 g Sodium Bicarbonate  
pH to 10.0 with NaOH  
fill to 100 mL with dH

2
O  

18. Remove PBS.  
f. Add 150 µl pre-warmed ABTS to wells stained with Donkey anti Mouse HRP 
and to first column of a 96 well dish to be used as a standard.  
g. Add 150 µl pNPP solution to wells stained with AP Streptavidin and to first 
column of a second 96 well dish to be used as a standard.  
h. Incubate on benchtop for 15 min.  

19. After the 15 min, add 150 µl 1% SDS to all wells containing ABTS, including those 
of the 96 well dish.  
20. a. Mix thoroughly by pipetting up and down and quickly add all 300 µl of  
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ABTS/SDS wells to corresponding well of 96 well dish .  
b. Mix thoroughly by pipetting up and down and quickly add all 150 µl of pNPP 
wells to corresponding well of 96 well dish.  
c. ABTS/SDS wells should turn green  
d. pNPP wells should turn yellow  

 
21. Read absorbances on plate reader at 405 nm in SoftMax Pro Program.  

e. Assay for ABTS/SDS: Endpoint ELISA: HRP and ABTS w SDS stop  
f. Assay for pNPP: Endpoint ELISA: AP and pNPP  

  
 

BCA Protein Concentration Assay  
 
1. Make BSA standard (1 mg/mL) solutions by adding the appropriate amount of BSA to 
microfuge tubes (0 µl, 5, 10, 15, 20, 25).  
2. Add 5 µl of protein sample to a new microfuge tube.  
3. Add 0.5 ml of BCA mixture to each microfuge tube:  

1 part Soln. B to 50 parts Soln. A  
4. Incubate for 30 min at 37° C.  
5. Read at 562 nm on plate reader.  
 
 
SDS-PAGE Gel Recipes  
 
MINIGEL: SEPARATING GEL (10ml)  
 
 
Reagent 8% 10% 13% 15% 
 
40% Acrylamide 2ml 2.5ml 3.25ml 3.75ml  
1.5M Tris, 0.4% SDS ph 8.8 2.5ml 2.5ml 2.5ml 2.5ml  
ddH

2
0 5.5ml 5ml 4.25ml 3.75ml  

10% APS 50µl 50µl 50µl 50µl  
TEMED 10µl 10µl 10µl 10µl  
 
MINIGEL: STACKING GEL (10ml)  
40% Acrylamide .75ml  
0.5M Tris, 0.4% SDS pH 6.8 2.5ml  
ddH

2
0 6.75ml  

10% APS 100µl  
TEMED 12µl  
 
 
SDS-PAGE Set Up  
 
1. Insert comb into rig and mark a line about 1 cm below the bottom of comb.  
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2. Add appropriate percentage separating gel first using a Pasteur pipet. This can store at 
4°C overnight. Leave pipet in gel mixture and wait to harden (about 10-15 min).  
3. Add a layer of 0.1% SDS.  
4. Pour stacking gel using a Pasteur pipet taking care to get rid of bubbles. Insert comb 
into rig, making sure no bubbles form and allow this to dry like the separating gel.  
5. Load gels into running rig, short plate towards the inside.  
6. Add 1X SDS running buffer in between 2 gel rigs, check for leaks.  
7. Load bench mark standard and samples with 2X or 4X sample buffer.  
8. Fill 1X SDS running buffer on out side of gel rig till it covers the wire running across 
the inside of gel rig.  
9. Run gel at ~150V until the dye runs out into the running buffer, usually 1 h.  
 
Cell Lysis (Western Blotting)  
 
1. Rinse culture dishes of cells twice with ice-cold 1X PBS  
2. Scrape cells into a pool at the bottom of the dish using 1X PBS with protease and 
phosphatase inhibitors added fresh each time  
3. Transfer pool of cells into an ice-cold microfuge tube and spin in a cold centrifuge at 
500-1200 rpm for about 5-15 min.  
4. Add 50 µl (A549) or 200-500 µl (HeLa, HepG2) of lysis buffer to the cell pellet after 
removing the supernatant.  
Lysis Buffer:  

1% NP-40 1mL  
1% deoxycholate salt 1g  
0.15M NaCl (from 5M stock) 3mL  
0.1% SDS (from 20% stock) 0.5mL  
0.01M sodium phosphate 7.2 10mL  
2mM EDTA (from 0.5M stock) 400µl  
50mM NaF (from 1M stock) 5mL  
0.2M orthovanadate (from 0.1M stock) 2mL  
H

2
0 (to 100mL total volume) 78mL  

*Fresh protease inhibitors each time  
5. Allow the cells to lyse on ice for 30 min with vortexing every 10 min.  
6. Spin in the cold centrifuge for 15 min, remove supernatant for BCA Assay.  
 
Western Blotting (Chemiluminiscence Detection)  
 
1. After electrophoresis, soak gel in transfer buffer (chilled) for 5-10 min.  
2. Assemble sandwich in the order indicated on the black side of cassette:  
 a. Scotch-brite pad  
 b. Whatman filter paper (cut slightly larger than the gel)  
 c. SDS-PAGE Gel  
 d. Nitrocellulose paper (roll out bubbles with pipet)  
 e. Whatman filter paper (roll out bubbles with pipet)  
 f. Scotch-brite pad  
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3. Seal cassette, place in apparatus, fill with transfer buffer, add a stir bar, and place the 
ice pack in the back.  
4. Place on stir plate and stir, hook up leads (- to – and + to +)  
5. Transfer at 100V for 1 h.  
6. Break down apparatus, store nitrocellulose in a dry petri dish until blotting.  
7. Block nitrocellulose filter with 5% milk/0.1% Tx-100/PBS for 1 h on shaker.  
8. Remove blocking solution.  
9. Incubate with 1° Ab diluted in milk solution for 1 h on shaker.  
10. Wash with Triton/PBS (1x 15 min, 3x 5 min).  
11. Incubate with 2° Ab for 1 h on shaker (HRP conjugated Donkey 1:5000).  
12. Wash with Triton/PBS (1x 15 min, 4x 5 min).  
13. Treat on saran wrap with ECL soln (1:1 mixture of Soln A and Soln B; make up just 
before use) 1 min, and expose the film (start with 1 min exposure).  
 
 
MAP Kinase Antibody Western Blot  
 
1. Block nitrocellulose with TBST/5% milk for 30 minutes at room temperature.  
2. Decant the milk and wash with TBST 3 times.  
3. Cover with TBST/0.1% BSA containing anti-phospho or anti-non phospho MAPK 
antibody (1:1000) at 4°C overnight.  
4. Decant antibody solution. 
5. Wash 5 times with 20 ml of TBS-Tween for 5 min each.  
6. Apply TBS-Tween/5% milk containing Goat anti-Rabbit HRP (1:1000) for 1 h at room 
temperature with agitation.  
7. Wash 5 times with 20 ml of TBS-Tween for 5 min each.  
8. Soak for 1 min in West Pico Chemiluminiscent Reagent.  
9. Expose to blot film in dark room.  
 
 
 
Immunoprecipitation Assay  
 
1. Transfect HeLa cells in 35 mm dishes.  
2. Rinse cells twice with ice-cold PBS, add 0.5 mL of lysis buffer and incubate on ice 10 
min.  
3. Scrape cells and collect lysate in microfuge tubes, vortex to break up clumps.  
4. Spin in the chilled centrifuge at 14,000 rpm (or top speed), at 4°C for 15 min.  
5. Transfer lysate to fresh tube, assay 10 µl for protein concentration with BCA mix.  
(BSA stds: 0, 2, 4, 6, 8, 10, 15, and 20 µg)  
6. Wash 30 µl protein A/G-agarose beads with PBS.  
7. Transfer equal amount of lysate to tube with protein A/G-agarose beads and add 1 µl of 
mouse anti-HA antibody (Covance). Tumble for 2 h at 4°C.  
8. Pellet beads and wash 3x with IP wash buffer.  
9. Add 30µl of 2X reducing sample buffer, boil 5 min.  
10. Pellet beads and load into a 10% SDS gel and proceed with western blotting.  
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Making Stable Cell Lines  
 
1. Transfect cells with appropriate DNA.  
2. On day supposed to do experiment, change media and let cells grow another day.  
3. Next day trypsinize cells and split 1:25 into 5, 10 cm dishes. Cover with 10 mL 
complete media containing 0.05 mg/mL G418.  
4. For 1 week, feed and treat cells with G418 (100 µl of the solution per dish).  
5. When colonies are large enough to see, pick them.  

-place 1 mL of complete media into 12 well dishes with 0.05 mg/mL G418  
-add 25 µl trypsin to lid of each well.  
-mark 5 well isolated colonies on each dish  
-remove media from cells  
-pick colony with P100 tip and transfer onto drop of trypsin with ~5 µl of trypsin 
in tip  
-Let sit for 2-5 minutes  

6. Add cell/trypsin mixture to corresponding well of 12 well dish.  
7. Place into CO2 incubator.  
8. Feed cells every 3 – 4 days.  
9. When definite colonies appear in 12 wells split into 6 well dishes with one coverslip. 
Test the coverslip by Immunofluorescence for stable transfection.  
10. When stably transfected cell line has been identified, freeze it down.  
 
 
Simple PCI quantitation 
 
1. Open new Workfile document 
 File> New>Workfile document 
 
2. Set imaging parameters 
 - Click capture icon (top left corner) 
 - Set exposure time and gain 
 - Capture image 
 - Click OK (this will save settings to workfile) 
 
3. Set quantitation parameters 
 - Use icons going down on the left side of the screen 
 - Use only identify and measure 
  - Identify (set threshold min and max, click ok) 
  - Measure (select measurements - area, greylevel and total grey) 
 - All of these changes will be saved to the workfile document. 
 
4. Collect data 
 - select start collecting button (trafficlight icon) 
 - Create data file box appears – choose save location 
 - select start icon (arrow) 
 - Capture window will open 
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  - capture image 
 - click ok 

- Software will automatically identify objects, quantify and return to the capture 
screen 

 - When finished collecting images for a data set, click stop collecting button in 
capture window 
 
5. Analyze data 
 -  Data will be stored in columns as area, greylevel and total grey. 
 - Total grey corresponds to total fluorescence in the captured picture 
 - convert data file to excel and analyze data. 
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