Person:
Egerstedt, Magnus B.

Associated Organization(s)
ORCID
ArchiveSpace Name Record

Publication Search Results

Now showing 1 - 4 of 4
  • Item
    Specification-Based Task Orchestration for Multi-Robot Aerial Teams
    (Georgia Institute of Technology, 2022-08-11) Banks, Christopher J.
    As humans begin working more frequently in environments with multi-agent systems, they are presented with challenges on how to control these systems in an intuitive manner. Current approaches tend to limit either the interaction ability of the user or limit the expressive capacity of instructions given to the robots. Applications that utilize temporal logics provide a human-readable syntax for systems that ensures formal guarantees for specification completion. By providing a modality for global task specification, we seek to reduce cognitive load and allow for high-level objectives to be communicated to a multi-agent system. In addition to this, we also seek to expand the capabilities of swarms to understand desired actions via interpretable commands retrieved from a human. In this thesis, we first present a method for specification-based control of a quadrotor. We utilize quadrotors as a highly agile and maneuverable application platform that has a wide variety of uses in complex problem domains. Leveraging specification-based control allows us to formulate a specification-based planning framework that will be utilized throughout the thesis. We then present methods for creating systems which allows us to provide task decomposition, allocation and planning for a team of quadrotors defined as task orchestration of multi-robot systems. Next, the task allocation portion of the task orchestration work is extended in the online case by considering cost agnostic sampling of trajectories from an online optimization problem. Then, we will introduce learning techniques where temporal logic specifications are learned and generated from a set of user given traces. Finally, we will conclude this thesis by presenting an extension to the Robotarium through hardware and software modifications that provides remote users access to control aerial swarms.
  • Item
    Temporal Heterogeneity and the Value of Slowness in Robotic Systems
    (Georgia Institute of Technology, 2015-12) Arkin, Ronald C. ; Egerstedt, Magnus B.
    Robot teaming is a well-studied area, but little research to date has been conducted on the fundamental benefits of heterogeneous teams and virtually none on temporal heterogeneity, where timescales of the various platforms are radically different. This paper explores this aspect of robot ecosystems consisting of fast and slow robots (SlowBots) working together, including the bio-inspiration for such systems.
  • Item
    Kinematics and Inverse Kinematics for the Humanoid Robot HUBO2+
    (Georgia Institute of Technology, 2013) O’Flaherty, Rowland ; Vieira, Peter ; Grey, Michael ; Oh, Paul ; Bobick, Aaron F. ; Egerstedt, Magnus B. ; Stilman, Mike
    This paper derives the forward and inverse kinematics of a humanoid robot. The specific humanoid that the derivation is for is a robot with 27 degrees of freedom but the procedure can be easily applied to other similar humanoid platforms. First, the forward and inverse kinematics are derived for the arms and legs. Then, the kinematics for the torso and the head are solved. Finally, the forward and inverse kinematic solutions for the whole body are derived using the kinematics of arms, legs, torso, and head.
  • Item
    What Are the Ants Doing? Vision-Based Tracking and Reconstruction of Control Programs
    (Georgia Institute of Technology, 2005-04) Balch, Tucker ; Dellaert, Frank ; Delmotte, Florent ; Khan, Zia ; Egerstedt, Magnus B.
    In this paper, we study the problem of going from a real-world, multi-agent system to the generation of control programs in an automatic fashion. In particular, a computer vision system is presented, capable of simultaneously tracking multiple agents, such as social insects. Moreover, the data obtained from this system is fed into a mode-reconstruction module that generates low-complexity control programs, i.e. strings of symbolic descriptions of control-interrupt pairs, consistent with the empirical data. The result is a mechanism for going from the real system to an executable implementation that can be used for controlling multiple mobile robots.