Person:
Egerstedt, Magnus B.

Associated Organization(s)
ORCID
ArchiveSpace Name Record

Publication Search Results

Now showing 1 - 2 of 2
  • Item
    Real-time optimal control of autonomous switched systems
    (Georgia Institute of Technology, 2009-11-13) Ding, Xu Chu
    This thesis provides a real-time algorithmic optimal control framework for autonomous switched systems. Traditional optimal control approaches for autonomous switched systems are open-loop in nature. Therefore, the switching times of the system can not be adjusted or adapted when the system parameters or the operational environments change. This thesis aims to close this loop, and apply adaptations to the optimal switching strategy based on new information that can only be captured on-line. One important contribution of this work is to provide the means to allow feedback (in a general sense) to the control laws (i.e. the switching times) of the switched system so that the control laws can be updated to maintain optimality of the switching-time control inputs. Furthermore, convergence analyses for the proposed algorithms are presented. The effectiveness of the real-time algorithms is demonstrated by an application in optimal formation and coverage control of a networked system. This application is implemented on a realistic simulation framework consisting of a number of Unmanned Aerial Vehicles (UAVs) that interact in a virtual 3D world.
  • Item
    Optimal Control of Switched Autonomous Systems: Theory, Algorithms, and Robotic Applications
    (Georgia Institute of Technology, 2006-04-05) Axelsson, Henrik
    As control systems are becoming more and more complex, system complexity is rapidly becoming a limiting factor in the efficacy of established techniques for control systems design. To cope with the growing complexity, control architectures often have a hierarchical structure. At the base of the system pyramid lie feedback loops with simple closed-loop control laws. These are followed, at a higher level, by discrete control logics. Such hierarchical systems typically have a hybrid nature. A common approach to addressing these types of complexity consists of decomposing, in the time domain, the control task into a number of modes, i.e. control laws dedicated to carrying out a limited task. This type of control generally involves switching laws among the various modes, and its design poses a major challenge in many application domains. The primary goal of this thesis is to develop a unified framework for addressing this challenge. To this end, the contribution of this thesis is threefold: 1. An algorithmic framework for how to optimize the performance of switched autonomous systems is derived. The optimization concerns both the sequence in which different modes appear in and the duration of each mode. The optimization algorithms are presented together with detailed convergence analyses. 2. Control strategies for how to optimize switched autonomous systems operating in real time, and when the initial state of the system is unknown, are presented. 3. A control strategy for how to optimally navigate an autonomous mobile robot in real-time is presented and evaluated on a mobile robotics platform. The control strategy uses optimal switching surfaces for when to switch between different modes of operations (behaviors).