Person:
Egerstedt, Magnus B.

Associated Organization(s)
ORCID
ArchiveSpace Name Record

Publication Search Results

Now showing 1 - 10 of 14
  • Item
    Automatic Generation of Persistent Formations for Multi-Agent Networks Under Range Constraints
    (Georgia Institute of Technology, 2009-06) Smith, Brian Stephen ; Egerstedt, Magnus B. ; Howard, Ayanna M.
    In this paper we present a collection of graph-based methods for determining if a team of mobile robots, subjected to sensor and communication range constraints, can persistently achieve a specified formation. What we mean by this is that the formation, once achieved, will be preserved by the direct maintenance of the smallest subset of all possible pairwise inter-agent distances. In this context, formations are defined by sets of points separated by distances corresponding to desired inter-agent distances. Further, we provide graph operations to describe agent interactions that implement a given formation, as well as an algorithm that, given a persistent formation, automatically generates a sequence of such operations. Experimental results are presented that illustrate the operation of the proposed methods on real robot platforms.
  • Item
    Automatic Formation Deployment of Decentralized Heterogeneous Multiple-Robot Networks with Limited Sensing Capabilities
    (Georgia Institute of Technology, 2009-05) Smith, Brian Stephen ; Wang, Jiuguang ; Howard, Ayanna M. ; Egerstedt, Magnus B.
    Heterogeneous multi-robot networks require novel tools for applications that require achieving and maintaining formations. This is the case for distributing sensing devices with heterogeneous mobile sensor networks. Here, we consider a heterogeneous multi-robot network of mobile robots. The robots have a limited range in which they can estimate the relative position of other network members. The network is also heterogeneous in that only a subset of robots have localization ability. We develop a method for automatically configuring the heterogeneous network to deploy a desired formation at a desired location. This method guarantees that network members without localization are deployed to the correct location in the environment for the sensor placement
  • Item
    Automatic Formation Deployment of Decentralized Heterogeneous Multiple-Robot Networks with Limited Sensing Capabilities
    (Georgia Institute of Technology, 2009-05) Smith, Brian Stephen ; Wang, Jiuguang ; Egerstedt, Magnus B. ; Howard, Ayanna M.
    Heterogeneous multi-robot networks require novel tools for applications that require achieving and maintaining formations. This is the case for distributing sensing devices with heterogeneous mobile sensor networks. Here, we consider a heterogeneous multi-robot network of mobile robots. The robots have a limited range in which they can estimate the relative position of other network members. The network is also heterogeneous in that only a subset of robots have localization ability. We develop a method for automatically configuring the heterogeneous network to deploy a desired formation at a desired location. This method guarantees that network members without localization are deployed to the correct location in the environment for the sensor placement.
  • Item
    Automatic Generation of Persistent Formations for Multi-Agent Networks Under Range Constraints
    (Georgia Institute of Technology, 2009-04) Smith, Brian Stephen ; Howard, Ayanna M. ; Egerstedt, Magnus B.
    In this paper we present a collection of graphbased methods for determining if a team of mobile robots, subjected to sensor and communication range constraints, can persistently achieve a specified formation. What we mean by this is that the formation, once achieved, will be preserved by the direct maintenance of the smallest subset of all possible pairwise interagent distances. In this context, formations are defined by sets of points separated by distances corresponding to desired inter-agent distances. Further, we provide graph operations to describe agent interactions that implement a given formation, as well as an algorithm that, given a persistent formation, automatically generates a sequence of such operations. Experimental results are presented that illustrate the operation of the proposed methods on real robot platforms.
  • Item
    Automatic coordination and deployment of multi-robot systems
    (Georgia Institute of Technology, 2009-03-31) Smith, Brian Stephen
    We present automatic tools for configuring and deploying multi-robot networks of decentralized, mobile robots. These methods are tailored to the decentralized nature of the multi-robot network and the limited information available to each robot. We present methods for determining if user-defined network tasks are feasible or infeasible for the network, considering the limited range of its sensors. To this end, we define rigid and persistent feasibility and present necessary and sufficient conditions (along with corresponding algorithms) for determining the feasibility of arbitrary, user-defined deployments. Control laws for moving multi-robot networks in acyclic, persistent formations are defined. We also present novel Embedded Graph Grammar Systems (EGGs) for coordinating and deploying the network. These methods exploit graph representations of the network, as well as graph-based rules that dictate how robots coordinate their control. Automatic systems are defined that allow the robots to assemble arbitrary, user-defined formations without any reliance on localization. Further, this system is augmented to deploy these formations at the user-defined, global location in the environment, despite limited localization of the network. The culmination of this research is an intuitive software program with a Graphical User Interface (GUI) and a satellite image map which allows users to enter the desired locations of sensors. The automatic tools presented here automatically configure an actual multi-robot network to deploy and execute user-defined network tasks.
  • Item
    Multi-Robot Deployment and Coordination with Embedded Graph Grammars
    (Georgia Institute of Technology, 2009-01) Smith, Brian Stephen ; Howard, Ayanna M. ; McNew, John-Michael ; Egerstedt, Magnus B.
    This paper presents a framework for going from specifications to implementations of decentralized control strategies for multi-robot systems. In particular, we show how the use of Embedded Graph Grammars (EGGs) provides a tool for characterizing local interaction and control laws. This paper highlights some key implementation aspects of the EGG formalism, and develops and discusses experimental results for a hexapod-based multi-robot system, as well as a multi-robot system of wheeled robots.
  • Item
    Multi-robot deployment and coordination with Embedded Graph Grammars
    (Georgia Institute of Technology, 2009-01) Smith, Brian Stephen ; Howard, Ayanna M. ; McNew, John-Michael ; Wang, Jiuguang ; Egerstedt, Magnus B.
  • Item
    Persistent Formation Control for Multi-Robot Networks
    (Georgia Institute of Technology, 2008-12) Smith, Brian Stephen ; Wang, Jiuguang ; Egerstedt, Magnus B.
    This paper presents a method for controlling formations of mobile robots. In particular, the problem of maintaining so-called "persistent formations" while moving the formation from one location to another is defined and investigated. A method for accomplishing such persistent formation motions is presented, and the method is demonstrated in simulation and with a prototype network of robots.
  • Item
    Automatic Deployment and Formation Control of Decentralized Multi-Agent Networks
    (Georgia Institute of Technology, 2008-05) Smith, Brian Stephen ; Egerstedt, Magnus B. ; Howard, Ayanna M.
    Novel tools are needed to deploy multi-agent networks in applications that require a high degree of accuracy in the achievement and maintenance of geometric formations. This is the case when deploying distributed sensing devices across large spatial domains. Through so-called Embedded Graph Grammars (EGGs), this paper develops a method for automatically generating control programs that ensure that a multi-robot network is deployed according to the desired configuration. This paper presents a communication protocol needed for implementing and executing the control programs in an accurate and deadlock-free manner.
  • Item
    Automatic Deployment and Formation Control of Decentralized Multi-Agent Networks
    (Georgia Institute of Technology, 2008-05) Smith, Brian Stephen ; Howard, Ayanna M. ; Egerstedt, Magnus B.
    Novel tools are needed to deploy multi-agent networks in applications that require a high degree of accuracy in the achievement and maintenance of geometric formations. This is the case when deploying distributed sensing devices across large spatial domains. Through so-called embedded graph grammars (EGGs), this paper develops a method for automatically generating control programs that ensure that a multi-robot network is deployed according to the desired configuration. This paper presents a communication protocol needed for implementing and executing the control programs in an accurate and deadlock-free manner.