Person:
Dellaert, Frank

Associated Organization(s)
Organizational Unit
ORCID
ArchiveSpace Name Record

Publication Search Results

Now showing 1 - 4 of 4
  • Item
    Supplementary Material to: IMU Preintegration on Manifold for Efficient Visual-Inertial Maximum-a-Posteriori Estimation
    (Georgia Institute of Technology, 2015-05-30) Forster, Christian ; Carlone, Luca ; Dellaert, Frank ; Scaramuzza, Davide
  • Item
    Rapid Loop Updates
    (Georgia Institute of Technology, 2012-09-11) Indelman, Vadim ; Dellaert, Frank
  • Item
    Factor Graphs and GTSAM: A Hands-on Introduction
    (Georgia Institute of Technology, 2012-09) Dellaert, Frank
    In this document I provide a hands-on introduction to both factor graphs and GTSAM. Factor graphs are graphical models (Koller and Friedman, 2009) that are well suited to modeling complex estimation problems, such as Simultaneous Localization and Mapping (SLAM) or Structure from Motion (SFM). You might be familiar with another often used graphical model, Bayes networks, which are directed acyclic graphs. A factor graph, however, is a bipartite graph consisting of factors connected to variables. The variables represent the unknown random variables in the estimation problem, whereas the factors represent probabilistic information on those variables, derived from measurements or prior knowledge. In the following sections I will show many examples from both robotics and vision. The GTSAM toolbox (GTSAM stands for “Georgia Tech Smoothing and Mapping”) toolbox is a BSD-licensed C++ library based on factor graphs, developed at the Georgia Institute of Technology by myself, many of my students, and collaborators. It provides state of the art solutions to the SLAM and SFM problems, but can also be used to model and solve both simpler and more complex estimation problems. It also provides a MATLAB interface which allows for rapid prototype development, visualization, and user interaction. GTSAM exploits sparsity to be computationally efficient. Typically measurements only provide information on the relationship between a handful of variables, and hence the resulting factor graph will be sparsely connected. This is exploited by the algorithms implemented in GTSAM to reduce computational complexity. Even when graphs are too dense to be handled efficiently by direct methods, GTSAM provides iterative methods that are quite efficient regardless. You can download the latest version of GTSAM at http://tinyurl.com/gtsam.
  • Item
    The Bayes Tree: Enabling Incremental Reordering and Fluid Relinearization for Online Mapping
    (Georgia Institute of Technology, 2010-01-29) Kaess, Michael ; Ila, Viorela ; Roberts, Richard ; Dellaert, Frank
    In this paper we present a novel data structure, the Bayes tree, which exploits the connections between graphical model inference and sparse linear algebra. The proposed data structure provides a new perspective on an entire class of simultaneous localization and mapping (SLAM) algorithms. Similar to a junction tree, a Bayes tree encodes a factored probability density, but unlike the junction tree it is directed and maps more naturally to the square root information matrix of the SLAM problem. This makes it eminently suited to encode the sparse nature of the problem, especially in a smoothing and mapping (SAM) context. The inherent sparsity of SAM has already been exploited in the literature to produce efficient solutions in both batch and online mapping. The graphical model perspective allows us to develop a novel incremental algorithm that seamlessly incorporates reordering and relinearization. This obviates the need for expensive periodic batch operations from previous approaches, which negatively affect the performance and detract from the intended online nature of the algorithm. The new method is evaluated using simulated and real-world datasets in both landmark and pose SLAM settings.