Person:
Howard, Ayanna M.

Associated Organization(s)
ORCID
ArchiveSpace Name Record

Publication Search Results

Now showing 1 - 3 of 3
  • Item
    Automatic Generation of Persistent Formations for Multi-Agent Networks Under Range Constraints
    (Georgia Institute of Technology, 2009-06) Smith, Brian Stephen ; Egerstedt, Magnus B. ; Howard, Ayanna M.
    In this paper we present a collection of graph-based methods for determining if a team of mobile robots, subjected to sensor and communication range constraints, can persistently achieve a specified formation. What we mean by this is that the formation, once achieved, will be preserved by the direct maintenance of the smallest subset of all possible pairwise inter-agent distances. In this context, formations are defined by sets of points separated by distances corresponding to desired inter-agent distances. Further, we provide graph operations to describe agent interactions that implement a given formation, as well as an algorithm that, given a persistent formation, automatically generates a sequence of such operations. Experimental results are presented that illustrate the operation of the proposed methods on real robot platforms.
  • Item
    Automatic Formation Deployment of Decentralized Heterogeneous Multiple-Robot Networks with Limited Sensing Capabilities
    (Georgia Institute of Technology, 2009-05) Smith, Brian Stephen ; Wang, Jiuguang ; Egerstedt, Magnus B. ; Howard, Ayanna M.
    Heterogeneous multi-robot networks require novel tools for applications that require achieving and maintaining formations. This is the case for distributing sensing devices with heterogeneous mobile sensor networks. Here, we consider a heterogeneous multi-robot network of mobile robots. The robots have a limited range in which they can estimate the relative position of other network members. The network is also heterogeneous in that only a subset of robots have localization ability. We develop a method for automatically configuring the heterogeneous network to deploy a desired formation at a desired location. This method guarantees that network members without localization are deployed to the correct location in the environment for the sensor placement.
  • Item
    Multi-Robot Deployment and Coordination with Embedded Graph Grammars
    (Georgia Institute of Technology, 2009-01) Smith, Brian Stephen ; Howard, Ayanna M. ; McNew, John-Michael ; Egerstedt, Magnus B.
    This paper presents a framework for going from specifications to implementations of decentralized control strategies for multi-robot systems. In particular, we show how the use of Embedded Graph Grammars (EGGs) provides a tool for characterizing local interaction and control laws. This paper highlights some key implementation aspects of the EGG formalism, and develops and discusses experimental results for a hexapod-based multi-robot system, as well as a multi-robot system of wheeled robots.