Organizational Unit:
College of Sciences

Research Organization Registry ID
Description
Previous Names
Parent Organization
Parent Organization
Includes Organization(s)
Organizational Unit
Organizational Unit
Organizational Unit

Publication Search Results

Now showing 1 - 10 of 17
  • Item
    Single-frame complete spatiotemporal measurement of complex ultrashort laser pulses
    (Georgia Institute of Technology, 2016-04-01) Guang, Zhe
    Today one of the frontiers in light measurement is to measure ultrashort pulses from ultrafast laser systems, which demonstrate extremely fast temporal variations, and are necessarily associated with large spectral bandwidths by Fourier transform. In addition to the temporal and spectral structures, ultrashort pulses can also be complex in space. Especially, the field can have spatiotemporal couplings which relate pulse temporal profile to spatial coordinates. Therefore, a complete spatiotemporal measurement technique is needed. In this work, we demonstrate our study on measuring complex ultrashort pulses by development of a method, called Spatially and Temporally Resolved Intensity and Phase Evaluation Device: Full Information from a Single Hologram (STRIPED FISH). Based on digital holography, this simple single-frame method can measure the complete spatiotemporal intensity I(x,y,t) and phase ϕ(x,y,t) of pulses at a particular z-plane. By experiments, we investigated sub-picosecond chirped pulse beating, pulses from multimode optical fibers, ultrafast lighthouse effect and so on, using STRIPED FISH. We also performed numerical simulations to understand the effects of different spatiotemporal distortions on STRIPED FISH trace. With its improved apparatus, processing algorithm, and display method, STRIPED FISH offers a simple and compact solution to monitor, measure, and display spatiotemporal structures in ultrashort pulses.
  • Item
    Troubleshooting ultrashort pulse measurement: the coherent artifact and other issues
    (Georgia Institute of Technology, 2016-03-14) Rhodes, Michelle Ann
    Theoretical limitations of several ultrashort pulse measurement techniques are investigated. Particular attention is paid to the consequences of averaging over many pulses of different shapes. Averaging over many pulses is a very common practice, and if the pulse shape varies then the measurement result will be incorrect. This issue, referred to as a coherent artifact, is simulated for frequency-resolved optical gating using several nonlinearities, spectral interferometry for direct electric field reconstruction, two-dimensional spectral shearing interferometry, self-referenced spectral interferometry using cross-polarized wave generation, and multiphoton intrapulse interference phase scan. The role of measurement feedback in identifying pulse-shape instability is explored where possible. Several techniques receive additional analysis, such as searching for ambiguities or simulating convergence conditions. In addition, a method for intuitively displaying spatiotemporally distorted pulses is explored and developed.
  • Item
    Single-shot measurements of complex pulses using frequency-resolved optical gating
    (Georgia Institute of Technology, 2013-11-07) Wong, Tsz Chun
    Frequency-resolved optical gating (FROG) is the standard for measuring femtosecond laser pulses. It measures relatively simple pulses on a single-shot and complex pulses using multi-shot scanning and averaging. However, experience from intensity autocorrelation suggests that multi-shot measurements may suffer from a coherent artifact caused by instability in the laser source. In this thesis, the coherent artifacts present in modern pulse measurement techniques are examined and single-shot techniques for measuring complex pulse(s) are proposed and demonstrated. The study of the coherent artifact in this work shows that modern pulse measurement techniques also suffer from coherent artifacts and therefore single-shot measurements should be performed when possible. Here, two single-shot experimental setups are developed for different scenarios. First, an extension of FROG is developed to measure two unknown pulses simultaneously on a single-shot. This setup can measure pulses that have very different center wavelengths, spectral bandwidths, and complexities. Second, pulse-front tilt is incorporated to extend the temporal range of single-shot FROG to tens of picoseconds which traditionally can only be attained by multi-shot scanning. Finally, the pulse-front tilt setup is modified to perform a single-shot measurement of supercontinuum, one of the most difficult pulses to measure due to its long temporal range, broad spectral bandwidth, and low pulse energy.
  • Item
    Optical-parametric-amplification applications to complex images
    (Georgia Institute of Technology, 2011-07-01) Vaughan, Peter Matthias
    We have used ultrafast optics, primarily focused on the nonlinear processes of Polarization Gating and of Optical Parametric Amplification, one for measurement and the other for imaging purposes. For measurement, we have demonstrated a robust method of measurement to simultaneously measure both optical pulses used in a pump-probe type configuration. We refer to this method of pulse measurement as Double Blind Polarization Gating FROG. We have demonstrated this single-shot method for measuring two unknown pulses using one device. In addition to pulse measurement, we have demonstrated the processes of Optical Parametric Amplification (OPA) applicability to imaging of complex objects. We have done this where the Fourier transform plane is used during the interaction. We have amplified and wavelength converted a complex image. We observe a gain of ~100, and, although our images were averaged over many shots, we used a single-shot geometry, capable of true single-shot OPA imaging. To our knowledge, this is the first Fourier-plane OPA imaging of more than a single spatial-frequency component of an image. We observe more than 30 distinct spatial frequency components in both our amplified image and our wavelength shifted image. We have demonstrated all-optical spatial filtering for these complex images. We have demonstrated that direct Fourier filtering of spatial features is possible by using a shaped pump beam. We can isolate certain portions of the image simply by rotating the crystal.
  • Item
    Pulse compression and dispersion control in ultrafast optics
    (Georgia Institute of Technology, 2011-01-22) Chauhan, Vikrant Chauhan Kumar
    Pulse Compression and Dispersion Control in Ultrafast Optics Vikrant K. Chauhan 116 Pages Directed by Dr. Rick P. Trebino In this thesis, we introduced novel pulse compressors that are easy to align and which also compensate for higher order dispersion terms. They use a single dispersive element or a combination of dispersive elements in single-element-geometry. They solve the problem of extra-cavity pulse compression by providing control of the pulse width in almost all of the experiments performed using ultrashort pulses, and they even compensate for higher order dispersion. We performed full spatiotemporal characterization of these compressors and demonstrated their performance. We also developed a theoretical simulation of pulse compressors which is based on a matrix based formalism. It models the full spatiotemporal characteristics of any dispersion control system. We also introduced a simple equation, in its most general form, to relate the total dispersion and magnification introduced by an arbitrary sequence of dispersive devices. Pulse compressor characterization was done using interferometric measurements in the experiments presented in this work, but we also developed a method to measure pulses that uses polarization gating FROG for measuring two unknown pulses. In the last part, we briefly discuss the designing of a high energy chirped pulse amplification system.
  • Item
    Measuring the electric field of picosecond to nanosecond pulses with high spectral resolution and high temporal resolution
    (Georgia Institute of Technology, 2010-10-08) Cohen, Jacob Arthur
    We demonstrate four experimentally simple methods for measuring very complex ultrashort light pulses. Although each method is comprised of only a few optical elements, they permit the measurement of extremely complex pulses with time-bandwidth products greater than 65,000. First, we demonstrate an extremely simple frequency-resolved-optical gating (GRENOUILLE) device for measuring the intensity and phase of pulses up to ~20ps in length. In order to achieve the required high spectral resolution and large temporal range, it uses a few-cm-thick second harmonic-generation crystal in the shape of a pentagon. This has the additional advantage of reducing the device's total number of components to three. Secondly, we introduce a variation of spectral interferometry (SI) using a virtually imaged phased array and grating spectrometer for measuring long complex ultrashort pulses up to 80 ps in length. Next, we introduce a SI technique for measuring the complete intensity and phase of relatively long and very complex ultrashort pulses. It involves making multiple measurements using SI (in its SEA TADPOLE variation) at numerous delays, measuring many temporal pulselets within the pulse, and concatenating the resulting pulselets. Its spectral resolution is the inverse delay range--many times higher than that of the spectrometer used. The waveforms were measured with ~ fs temporal resolution over a temporal range of ~ns and had time-bandwidth products exceeding 65,000, which to our knowledge is the largest time-bandwidth product ever measured with ~fs temporal resolution. Finally, we demonstrate a single-shot measurement technique that temporally interleaves hundreds of measurements with ~fs temporal resolution. It is another variation of SI for measuring the complete intensity and phase of relatively long and complex ultrashort pulses in a single shot. It uses a grating to introduce a transverse time delay into a reference pulse which gates the unknown pulse by interfering it at the image plane of an imaging spectrometer. It provided ~125 fs temporal resolution and a temporal range of 70 ps using a low-resolution spectrometer.
  • Item
    Measurement of complex ultrashort laser pulses using frequency-resolved optical gating
    (Georgia Institute of Technology, 2009-07-06) Xu, Lina
    This thesis contains three components of research: a detailed study of the performance of Frequency-Resolved Optical Gating (FROG) for measuring complex ultrashort laser pulses, a new method for measuring the arbitrary polarization state of an ultrashort laser pulse using Tomographic Ultrafast Retrieval of Transverse Light E-fields (TURTLE) technique, and new approach for measuring two complex pulses simultaneously using PG blind FROG. In this thesis, we compare the performance of three versions of FROG to measure complex ultrashort laser pulses: second-harmonic-generation (SHG) FROG, polarization-gate (PG) FROG, and cross-correlation FROG (XFROG). We found that the XFROG algorithm achieves 100% convergence, while PG FROG and SHG FROG GP algorithm achieve 100% convergence after doing the noise deduction and increasing the sampling range. The second part of this thesis describes a method for measuring the intensity, phase and the complete polarization state of a laser pulse having a time-dependent polarization state (i.e. a polarization shaped pulse). This technique is called tomographic ultrafast retrieval of transverse light E-fields (TURTLE). TURTLE typically involves making three FROG measurements: one of the intensity and phase of the pulse's horizontal polarization component, one of its vertical component, and another of the 45o component. Performing a simple minimization using these three FROG measurements, the time-dependent polarization state of the ultrashort pulse can be determined. The third part of this thesis introduces a method for measuring two complex pulses simultaneously using a single FROG device. This technique is based on Polarization-gate (PG) FROG and it is called PG blind FROG. It involves two measurements: One of them is a PG FROG trace using the intensity of pulse 1 to gate pulse 2 and other one is the PG FROG trace using the intensity of pulse 2 to gate pulse 1. An iterative phase retrieval algorithm based on generalized projection (GP) is used to reconstruct the intensity and phase of these two pulses. This approach is an elegant way to measure complex and/or very spectrally broad pulses such as those due to super continuum.
  • Item
    Measuring the spatiotemporal electric field of ultrashort pulses with high spatial and spectral resolution
    (Georgia Institute of Technology, 2009-04-06) Bowlan, Pamela
    In this thesis a powerful and practical method for characterizing ultrashort pulses in space and time is described (called SEA TADPOLE). First we focus on measuring pulses that are spatially uniform but very complicated in time or frequency. We demonstrate and verify that SEA TADPOLE can measure temporal features as small as 30 femtoseconds over durations as long as 14 picoseconds. The spectral resolution of this device is carefully studied and we demonstrate that for certain pulses, we achieve spectral super resolution. We also develop and test an algorithm for measuring polarization shaped pulses with SEA TADPOLE. Our simple interferometer can even be used to measure the spatiotemporal electric field of ultrashort pulses at a focus. This is because SEA TADPOLE samples the field with an optical fiber which has a small core size. Therefore this fiber can be used to spatially sample the beam, so that the temporal electric field can be measured at every position to obtain E(x, y, z, t). The single mode fiber can be replaced with an NSOM (Near Field Scanning Optical Microscopy) fiber so that spatial resolution as low as 500nm (and possibly lower) can be achieved. Using this device we make the first direct measurements of the compete field of focusing ultrashort pulses. These measurement can be viewed as "snap shots" in flight of the focusing pulse. Also, for the first time, we have observed some of the interesting distortions that have been predicted for focusing ultrashort pulses such as the "forerunner" pulse, radially varying group delay dispersion, and the Bessel-like X-shaped pulse. We have also made the first direct measurements of the electric field of Bessel X-pulses and their propagation invariance is demonstrated. We also use SEA TADPOLE to study the "boundary wave pulses" which are due to diffraction.
  • Item
    Novel Polarimetry Techniques
    (Georgia Institute of Technology, 2007-08-13) Kothari, Neeraj
    Polarization specific measurements are advancing the capabilities of scientific instruments looking for ever smaller effects and material parameters. For example, the magneto-optical nonlinear Faraday effect can be used to characterize various electric and magnetic polarizability parameters of an individual molecule. Another major application is detection of desired particles in a highly scattering environment, the physical effect of which has been extensively researched, and is being overcome by using time-gated and polarization techniques. The polarimeter sensitivity is limited by the extinction-ratio obtained from polarizers. Of available polarizer materials, naturally occurring Calcite crystals provide the best extinction ratios because of their good optical homogeneity and high birefringence. However, there is a need for polarization determination with higher sensitivities, and thus a necessity to find better polarizing materials and methods. I developed a next-generation polarimeter in an attempt to sensitively detect the second-order Faraday effect, along with a substance s chirality and Verdet constant. Also, I developed a device uniquely able to sensitively detect chiral signatures in the presence of massive depolarizing scattering. In addition, I begun developing a novel type of polarimeter based on the highly-polarization-sensitive nonlinear-optical process of harmonic generation, whose required crystals can be grown with extremely high quality.
  • Item
    Ultra-broadband phase-matching ultrashort-laser-pulse measurement techniques
    (Georgia Institute of Technology, 2007-07-03) Lee, Dongjoo
    In the past several decades the technology for the creation and use of ultrashort pulses has progressed tremendously. Now, it is possible to generate laser pulses as short as a few femtoseconds in duration, and such pulses have been used for a wide range of applications. In addition, the means of measuring these pulses has progressed so rapidly. However, despite recent great advances in ultrashort-pulse measurement techniques, much remains to be done. In particular, pulse-measurement devices have relatively small wavelength-tuning ranges, and the phase-match is problematic for the pulses with a wide bandwidth such as supercontinuum. In this thesis, I will demonstrate a new pulse measurement technique which can phase-match ultra-broad bandwidth of super-continuum using transient grating frequency-resolved-optical-gating (TG FROG). Also, I will demonstrate a simplified device which can measure the UV ultra-short pulse using transient grating process, one of the third-order nonlinearity and can cover from UV to IR with the same arrangement.