Organizational Unit:
Unmanned Aerial Vehicle Research Facility

Research Organization Registry ID
Description
Previous Names
Parent Organization
Parent Organization
Includes Organization(s)

Publication Search Results

Now showing 1 - 8 of 8
  • Item
    A Comprehensive Matrix of Unmanned Aerial Systems Requirements for Potential Applications within a Department of Transportation
    (Georgia Institute of Technology, 2014) Karan, Ebrahim P. ; Christmann, Hans Claus ; Gheisar, Masoud ; Irizarry, Javier ; Johnson, Eric N.
    The continuous improvement in the function and performance of Unmanned Aerial Systems (UASs) promotes the need for specific research to integrate this leading edge technology in to various applications across Departments of Transportation (DOTs). DOTs of several states have started looking into using UAS technology for different purposes from tracking highway construction projects and performing structure inventories to road maintenance, monitoring roadside environmental conditions, as well as many other traffic management or safety issues, albeit individually focusing on specific us age scenarios. This study investigates various divisions and offices within a Department of Transportation to determine the operational requirements for UAS usage in specific divisions which have the potential to implement this technology to aid and supplement their daily operations. Through a series of interviews with subject matter experts at the management and operational levels, a matrix of user requirements for tasks that have the potential to use UAS is developed. This matrix is mapped to a UAS technical matrix that embeds the technological and technical requirements for development of a potential UAS. These matrices can be used by other DOTs for defining the design specifications for UAS that can fulfill their construction related operational requirements.
  • Item
    Integrated Guidance Navigation and Control for a Fully Autonomous Indoor UAS
    (Georgia Institute of Technology, 2011-08) Chowdhary, Girish ; Sobers, D. Michael, Jr. ; Pravitra, Chintasid ; Christmann, Hans Claus ; Wu, Allen ; Hashimoto, Hiroyuki ; Ong, Chester ; Kalghatgi, Roshan ; Johnson, Eric N.
    This paper describes the details of a Quadrotor miniature unmanned aerial system capable of autonomously exploring cluttered indoor areas without relying on any external navigational aids such as GPS. A streamlined Simultaneous Localization and Mapping (SLAM) algorithm is implemented onboard the vehicle to fuse information from a scanning laser range sensor, an inertial measurement unit, and an altitude sonar to provide relative position, velocity, and attitude information. This state information, with a self-generated map, is used to implement a frontier-based exhaustive search of an indoor environment. To ensure the SLAM algorithm has sufficient information to form a reliable solution, the guidance algorithm ensures the vehicle approaches frontier waypoints through a path that remains within sensor range of indoor structures. Along with a detailed description of the system, simulation and hardware testing results are presented.
  • Item
    Modeling Urban Environments for Communication-Aware UAV Swarm Path Planning
    (Georgia Institute of Technology, 2010-08) Christmann, Hans Claus ; Johnson, Eric N.
    The presented work introduces a graph based approach to model urban (or otherwise cluttered) environments for UAS utilization beyond line-of-sight as well as out of direct R/F range of the operator's control station. Making the assumption that some a priori data of the environment is available, the proposed method uses a classification of obstacles with respect to their impact on UAV motion and R/F communication and generates continuously updateable graphs usable to compute traverseable paths for UAVs while maintaining R/F communication. Using a simulated urban scenario this work shows that the proposed modeling method allows to find reachable loiter or hover areas for UAVs in order to establish a multi-hop R/F communication link between a primary UAV and its remote operator by utilizing an overlay of motion (Voronoi based) and R/F (visibility based) specific mapping methods.
  • Item
    A Language for Describing Agent Behavior as Hybrid Models
    (Georgia Institute of Technology, 2009-08) Kannan, Suresh K. ; Christmann, Hans Claus ; Lee, Seungman ; Johnson, Eric N. ; Kim, So Y. K
    Air Traffic conflict detection and resolution (CDR) involves multiple domains, the modeling of physical systems such as aircraft, encoding conflict detection algorithms as well as the procedures(tasks) for conflict resolution. Depending on the analysis being conducted, an implementation language is usually chosen to cater for easy rendering of algorithms in the primary domain of interest. The more specialized the choice of implementation language, the greater the difficulty in expanding the fidelity of models in other domains. This paper takes a unified view of continuous equations, algorithms and procedures. Events that occur in sequence as well as in parallel are represented in a unified manner by interpreting them as hierarchical state-charts at a low-level and as procedures or task trees at a higher level. The relationship between the two levels are recognized and utilized in decomposing task trees in to hierarchical state charts and eventually into C++ code for implementation.
  • Item
    Georgia Tech Aerial Robotics Team: 2009 International Aerial Robotics Competition Entry
    (Georgia Institute of Technology, 2009-07) Chowdhary, Girish ; Christmann, Hans Claus ; Johnson, Eric N. ; Salaün, Erwan ; Sobers, D. Michael Jr.
    This paper examines the use of low-cost range and target identification sensors on a stable flying vehicle for suitability in solving the 5th Mission proposed for the 2009 International Aerial Robotics Competition. The ability for vehicles to navigate unknown environments is critical for autonomous operation. Mapping of a vehicle's environment and self-localization within that environment are especially difficult for an Unmanned Aerial Vehicle (UAV) due to the complexity of UAV attitude and motion dynamics. Using a stable vehicle platform and taking advantage of the geometric structure typical of most indoor environments reduces the complexity of the localization and mapping problem to the point that wall and obstacle location can be determined using low-cost range sensors. Target identification is accomplished remotely using an onboard video camera with a radio transmitter. Thus complex and time-consuming image processing routines are run on a more powerful computer, enabling further miniaturization of the flight vehicle.
  • Item
    UAS Reference Scenarios for MANET Development
    (Georgia Institute of Technology, 2008-08) Christmann, Hans Claus ; Johnson, Eric N.
    After autonomous flight for Unmanned Aerial Vehicles (UAVs) has been accomplished, research was stipulated to look into application related challenges in connection with Unmanned Aerial Systems (UAS). As one possible scenario, swarms of collaborating UAVs can be envisioned and allow for more complex missions and scenarios. One essential building block in simultaneously operating several UAVs is the UAS internal and external communication. Ground control station operators need to communicate guidance, navigation, and control (GNC) data, external beneficiaries of the UAS operation need to be provided with obtained sensor data and intelligence. All this requires sophisticated wireless communication networks and Mobile Ad-hoc Networks (MANETs) step into the picture. However, evaluating the performance of different MANETs in a UAS environment is non-trivial: relevant metrics and evaluation procedures have to be established for a simulation based performance prediction during the design phase of a MANET. Unfortunately, published results on MANET performance are not necessarily comparable across different papers, due to differences in the underlying assumptions. Some findings might not even be applicable to a UAS environment. This paper proposes a set of reference scenarios in order to allow for comparable and applicable results in MANET simulations. The presented scenarios mimic realistic UAS missions, both, on the operational side of the participating network nodes, as well as on the network traffic side. The reference scenarios capture the essence of current UAVs and UAS missions in a civil, research, or military context, hence providing the means to simulate different MANET protocols in a UAS setting.
  • Item
    Guidance, Navigation, Control, and Operator Interfaces for Small Rapid Response Unmanned Helicopters
    (Georgia Institute of Technology, 2008-04) Christmann, Hans Claus ; Christophersen, Henrik B. ; Wu, Allen D. ; Johnson, Eric N.
    This paper focuses on the development of small rapid response reconnaissance unmanned helicopters (1 to 3 kg, electric), for use by the military in urban areas and by civilian first responders, in terms of system architecture, automation (including navigation, flight control, and guidance), and operator interface designs. Design objectives include an effective user interface, a vehicle capable of smooth and precise motion control, an ability to display clear images to an operator, and a vehicle that is capable of safe and stable flight.
  • Item
    Design and Implementation of a Self-configuring Ad-hoc Network for Unmanned Aerial Systems
    (Georgia Institute of Technology, 2007-10) Christmann, Hans Claus ; Johnson, Eric N.
    Unmanned aerial vehicles (UAVs), and unmanned aerial systems (UAS) as such in general, need wireless networks in order to communicate. UAS are very flexible and hence allow for a wide range of missions by means of utilizing different UAVs according to the mission requirements. Each of these missions also poses special needs and requirements on the communication network. Especially, mission scenarios calling for UAV swarms increase the complexity and call for specialized communication solutions. This work focuses on these specialties and needs and describes the selection process, adaptation and implementation of an ad-hoc routing protocol tailored to an UAV surrounding and a correspondingly adapted communication method.