Organizational Unit:
Mobile Robot Laboratory

Research Organization Registry ID
Description
Previous Names
Parent Organization
Parent Organization
Organizational Unit
Includes Organization(s)

Publication Search Results

Now showing 1 - 3 of 3
  • Item
    Multiagent Mission Specification and Execution
    (Georgia Institute of Technology, 1997) Arkin, Ronald C. ; Cameron, Jonathan M. ; MacKenzie, Douglas Christopher
    Specifying a reactive behavioral configuration for use by a multiagent team requires both a careful choice of the behavior set and the creation of a temporal chain of behaviors which executes the mission. This difficult task is simplified by applying an object-oriented approach to the design of the mission using a construction called an assemblage and a methodology called temporal sequencing. The assemblage construct allows building high level primitives which provide abstractions for the designer. Assemblages consist of groups of basic behaviors and coordination mechanisms that allow the group to be treated as a new coherent behavior. Upon instantiation, the assemblage is parameterized based on the specific mission requirements. Assemblages can be re-parameterized and used in other states within a mission or archived as high level primitives for use in subsequent projects. Temporal sequencing partitions the mission into discrete operating states with perceptual triggers causing transitions between those states. Several smaller independent configurations (assemblages) can then be created which each implement one state. The Societal Agent theory is presented as a basis for constructions of this form. The Configuration Description Language (CDL) is developed to capture the recursive composition of configurations in an architecture- and robot-independent fashion. The MissionLab system, an implementation based on CDL, supports the graphical construction of configurations using a visual editor. Various multiagent missions are demonstrated in simulation and on our Denning robots using these tools.
  • Item
    Specification and Execution of Multiagent Missions
    (Georgia Institute of Technology, 1995) MacKenzie, Douglas Christopher ; Arkin, Ronald C. ; Cameron, Jonathan M.
    Specifying a purely reactive behavioral configuration for use by a multiagent team executing a mission requires both a careful choice of the behavior set and the creation of a temporal chain of behaviors which executes the mission. This difficult task is simplified by applying an object-oriented approach to the design of sequences of behavioral configurations where a methodology called temporal sequencing is used to partition the mission into discrete operating states and enumerate the perceptual triggers which cause transitions between those states. Several smaller independent configurations can then be created with each implementing one state, completing one step in the sequence. When properly constructed, these configurations (assemblages) become high level primitives reusable in subsequent projects, reducing development time. In the multi-vehicle domain being studied for the ARPA Demo II project, assemblages such as travel_to_location and occupy_location consist of groups of basic behaviors associated with coordination mechanisms that allow the group to be treated as a single coherent behavior. For example, travel_to_location consists of move_to_goal, avoid_obstacle, avoid_robot, noise, and stay_in_formation primitive behaviors moderated by a cooperative coordination operator. Upon instantiation, the assemblage is parameterized with a particular formation, goal location, and termination conditions. A mission coordination operator determines which assemblage to activate based upon the mission being executed and the current state of the system. A scenario language has been developed which allows specifying missions as sequences of steps, where each step invokes a particular assemblage. The missions are specified in a structured user-friendly language targeted for groups of cooperating robotic vehicles executing military-style scout missions. Various multiagent missions have been demonstrated in simulation using this system. Deployment on Denning mobile robots demonstrates the utility of this mission execution system, while later deployment on the ARPA Demo II test platforms will ultimately allow comparisons with software developed using other methods.
  • Item
    Integrated Control for Mobile Manipulation for Intelligent Materials Handling
    (Georgia Institute of Technology, 1992) Arkin, Ronald C. ; Arya, S. ; Book, Wayne J. ; Cameron, Jonathan M. ; Gardner, Warren F. ; Lawton, Daryl T. ; MacKenzie, Douglas Christopher ; Ramanathan, V. ; Son, C. ; Vachtsevanos, George J. ; Ward, Keith Ronald
    An integrated control system architecture for mobile manipulators is presented. This architecture incorporates a hybrid reactive/hierarchical structure and partitions the task into macro- and micro-manipulation components. Computer vision and other sensor modalities provide the input necessary to cope with materials handling tasks in a partially modeled and dynamic world.