Organizational Unit:
Center for Organic Photonics and Electronics

Research Organization Registry ID
Description
Previous Names
Parent Organization
Parent Organization
Includes Organization(s)
ArchiveSpace Name Record

Publication Search Results

Now showing 1 - 10 of 376
  • Item
    Concurrent three-dimensional characterization of the refractive-index and residual-stress distributions in optical fibers
    (Georgia Institute of Technology, 2012-08) Hutsel, Michael R. ; Gaylord, Thomas K.
    A three-dimensional index-stress distribution (3DISD) measurement method for determining concurrently the refractive-index distributions (RIDs) and residual-stress distributions (RSDs) in optical fibers is presented. The method combines the quantitative-phase microscopy technique, the Brace–Köhler compensator technique, and computed tomography principles. These techniques are implemented on a common apparatus to enable concurrent characterization of the RID and the RSD. Measurements are performed on Corning SMF-28 fiber in an unperturbed section and in a section exposed to CO₂ laser radiation. The concurrent measurements allow for the first accurate comparison of the collocated RID and RSD. The resolutions of the refractive index and stress are estimated to be 2.34×10⁻⁵and 0.35 MPa, respectively.
  • Item
    Highly efficient inverted top-emitting green phosphorescent organic light-lightemitting diodes on glass and flexible substrates
    (Georgia Institute of Technology, 2012-07) Najafabadi, E. ; Knauer, K. A. ; Haske, Wojciech ; Fuentes-Hernandez, Canek ; Kippelen, Bernard
    Green phosphorescent inverted top-emitting organic light-emitting diodes with high current efficacy and luminance are demonstrated on glass and polyethersulfone (PES) substrates coated with polyethylene dioxythiophene-polystyrene sulfonate (PEDOT:PSS). The bottom cathode is an aluminum/lithium fluoride bilayer that injects electrons efficiently into an electron transport layer of 1,3,5-tri(m-pyrid-3-yl-phenyl)benzene (TpPyPB). The cathode is found to be highly sensitive to the exposure of trace amounts of O₂ and H₂O. A high current efficacy of 96.3 cd/A is achieved at a luminance of 1387 cd/m² when an optical outcoupling layer of N,N′-Di-[(1-naphthyl)-N,N′-diphenyl]-(1,1′-biphenyl)-4,4′-diamine (α-NPD) is deposited on the anode.
  • Item
    Compact silicon diffractive sensor: design, fabrication, and prototype
    (Georgia Institute of Technology, 2012-07) Maikisch, Jonathan S. ; Gaylord, Thomas K.
    An in-plane constant-efficiency variable-diffraction-angle grating and an in-plane high-angular-selectivity grating are combined to enable a new compact silicon diffractive sensor. This sensor is fabricated in silicon-on-insulator and uses telecommunications wavelengths. A single sensor element has a micron-scale device size and uses intensity-based (as opposed to spectral-based) detection for increased integrability. In-plane diffraction gratings provide an intrinsic splitting mechanism to enable a two-dimensional sensor array. Detection of the relative values of diffracted and transmitted intensities is independent of attenuation and is thus robust. The sensor prototype measures refractive index changes of 10 ⁻⁴ . Simulations indicate that this sensor configuration may be capable of measuring refractive index changes three or four orders of magnitude smaller. The characteristics of this sensor type make it promising for lab-on-a-chip applications
  • Item
    Pattern-integrated interference lithography: single-exposure fabrication of photonic-crystal structures
    (Georgia Institute of Technology, 2012-06) Burrow, Guy M. ; Leibovici, Matthieu C. R. ; Gaylord, Thomas K.
    Multibeam interference represents an approach for producing one-, two-, and three-dimensional periodic optical-intensity distributions with submicrometer features and periodicities. Accordingly, interference lithography (IL) has been used in a wide variety of applications, typically requiring additional lithographic steps to modify the periodic interference pattern and create integrated functional elements. In the present work, pattern-integrated interference lithography (PIIL) is introduced. PIIL is the integration of superposed pattern imaging with IL. Then a pattern-integrated interference exposure system (PIIES) is presented that implements PIIL by incorporating a projection imaging capability in a novel three-beam interference configuration. The purpose of this system is to fabricate, in a single-exposure step, a two-dimensional periodic photonic-crystal lattice with nonperiodic functional elements integrated into the periodic pattern. The design of the basic system is presented along with a model that simulates the resulting optical-intensity distribution at the system sample plane where the three beams simultaneously interfere and integrate a superposed image of the projected mask pattern. Appropriate performance metrics are defined in order to quantify the characteristics of the resulting photonic-crystal structure. These intensity and lattice-vector metrics differ markedly from the metrics used to evaluate traditional photolithographic imaging systems. Simulation and experimental results are presented that demonstrate the fabrication of example photonic-crystal structures in a single-exposure step. Example well-defined photonic-crystal structures exhibiting favorable intensity and lattice-vector metrics demonstrate the potential of PIIL for fabricating dense integrated optical circuits
  • Item
    Invited Review Article: Combining scanning probe microscopy with optical spectroscopy for applications in biology and materials science
    (Georgia Institute of Technology, 2012-06) Lucas, Marcel ; Riedo, Elisa
    This is a comprehensive review of the combination of scanning probe microscopy (SPM) with various optical spectroscopies, with a particular focus on Raman spectroscopy. Efforts to combine SPM with optical spectroscopy will be described, and the technical difficulties encountered will be examined. These efforts have so far focused mainly on the development of tip-enhanced Raman spectroscopy, a powerful technique to detect and image chemical signatures with single molecule sensitivity, which will be reviewed. Beyond tip-enhanced Raman spectroscopy and/or topography measurements, combinations of SPM with optical spectroscopy have a great potential in the characterization of structure and quantitative measurements of physical properties, such as mechanical, optical, or electrical properties, in delicate biological samples and nanomaterials. The different approaches to improve the spatial resolution, the chemical sensitivity, and the accuracy of physical properties measurements will be discussed. Applications of such combinations for the characterization of structure, defects, and physical properties in biology and materials science will be reviewed. Due to the versatility of SPM probes for the manipulation and characterization of small and/or delicate samples, this review will mainly focus on the apertureless techniques based on SPM probes.
  • Item
    Adaptive steered molecular dynamics: Validation of the selection criterion and benchmarking energetics in vacuum
    (Georgia Institute of Technology, 2012-06) Ozer, Gungor ; Quirk, Stephen ; Hernandez, Rigoberto
    The potential of mean force (PMF) for stretching decaalanine in vacuum was determined earlier by Park and Schulten [J. Chem. Phys. 120, 5946 (2004)] in a landmark article demonstrating the efficacy of combining steered molecular dynamics and Jarzynski's nonequilibrium relation. In this study, the recently developed adaptive steered molecular dynamics (ASMD) algorithm [G. Ozer, E. Valeev, S. Quirk, and R. Hernandez, J. Chem. Theory Comput. 6, 3026 (2010)] is used to reproduce the PMF of the unraveling of decaalanine in vacuum by averaging over fewer nonequilibrium trajectories. The efficiency and accuracy of the method are demonstrated through the agreement with the earlier work by Park and Schulten, a series of convergence checks compared to alternate SMD pulling strategies, and an analytical proof. The nonequilibrium trajectories obtained through ASMD have also been used to analyze the intrapeptide hydrogen bonds along the stretching coordinate. As the decaalanine helix is stretched, the initially stabilized i → i + 4 contacts (α-helix) is replaced by i → i + 3 contacts (310[subscript]-helix). No significant formation of i → i + 5 hydrogen bonds (π-helix) is observed.
  • Item
    Pattern-integrated interference lithography instrumentation
    (Georgia Institute of Technology, 2012-06) Burrow, Guy M. ; Leibovici, Matthieu C. R. ; Kummer, J. W. ; Gaylord, Thomas K.
    Multi-beam interference (MBI) provides the ability to form a wide range of sub-micron periodic optical-intensity distributions with applications to a variety of areas, including photonic crystals (PCs), nanoelectronics, biomedical structures, optical trapping, metamaterials, and numerous subwavelength structures. Recently, pattern-integrated interference lithography (PIIL) was presented as a new lithographic method that integrates superposed pattern imaging with interference lithography in a single-exposure step. In the present work, the basic design and systematic implementation of a pattern-integrated interference exposure system (PIIES) is presented to realize PIIL by incorporating a projection imaging capability in a novel three-beam interference configuration. A fundamental optimization methodology is presented to model the system and predict MBI-patterning performance. To demonstrate the PIIL method, a prototype PIIES experimental configuration is presented, including detailed alignment techniques and experimental procedures. Examples of well-defined PC structures, fabricated with a PIIES prototype, are presented to demonstrate the potential of PIIL for fabricating dense integrated optical circuits, as well as numerous other subwavelength structures.
  • Item
    Aberration correction in wide-field fluorescence microscopy by segmented-pupil image interferometry
    (Georgia Institute of Technology, 2012-06) Scrimgeour, Jan ; Curtis, Jennifer E.
    We present a new technique for the correction of optical aberrations in wide-field fluorescence microscopy. Segmented-Pupil Image Interferometry (SPII) uses a liquid crystal spatial light modulator placed in the microscope’s pupil plane to split the wavefront originating from a fluorescent object into an array of individual beams. Distortion of the wavefront arising from either system or sample aberrations results in displacement of the images formed from the individual pupil segments. Analysis of image registration allows for the local tilt in the wavefront at each segment to be corrected with respect to a central reference. A second correction step optimizes the image intensity by adjusting the relative phase of each pupil segment through image interferometry. This ensures that constructive interference between all segments is achieved at the image plane. Improvements in image quality are observed when Segmented-Pupil Image Interferometry is applied to correct aberrations arising from the microscope’s optical path.
  • Item
    Azimuthal-order variations of surface-roughness-induced mode splitting and scattering loss in high-Q microdisk resonators
    (Georgia Institute of Technology, 2012-05) Li, Qing ; Eftekhar, Ali Asghar ; Xia, Zhixuan ; Adibi, Ali
    We report an experimental observation of strong variations of quality factor and mode splitting among whispering-gallery modes with the same radial order and different azimuthal orders in a scattering-limited microdisk resonator. A theoretical analysis based on the statistical properties of the surface roughness reveals that mode splittings for different azimuthal orders are uncorrelated, and variations of mode splitting and quality factor among the same radial mode family are possible. Simulation results agree well with the experimental observations.
  • Item
    Self-sustained gigahertz electronic oscillations in ultrahigh-Q photonic microresonators
    (Georgia Institute of Technology, 2012-05) Soltani, Mohammad ; Yegnanarayanan, Siva ; Li, Qing ; Eftekhar, Ali Asghar ; Adibi, Ali
    We report on theoretical and experimental observations of self-sustained fast [gigahertz (GHz)] electronic oscillations resulting from coupled electron-photon dynamics in ultrahigh-Q Si microdisk resonators with cw pumping. Our theoretical analysis identifies conditions for generating steady-state GHz oscillations while suppressing thermal oscillations [megahertz (MHz)] with submilliwatt input laser power. Such fast oscillations are tunable via changing the free-carrier (FC) lifetime of the resonator. Integrating a p-i-n diode with these high-Q resonators for controlling the FC lifetime promises the realization of an integrated voltage-controlled oscillator (VCO) in a silicon photonics chip.