Organizational Unit:
Humanoid Robotics Laboratory

Research Organization Registry ID
Description
Previous Names
Parent Organization
Parent Organization
Includes Organization(s)
ArchiveSpace Name Record

Publication Search Results

Now showing 1 - 6 of 6
  • Item
    Krang Kinematics: A Denavit-Hartenberg Parameterization
    (Georgia Institute of Technology, 2014) Erdogan, Can ; Zafar, Munzir ; Stilman, Mike ; Georgia Institute of Technology. Institute for Robotics and Intelligent Machines ; Georgia Institute of Technology. College of Computing
  • Item
    Algorithms for Linguistic Robot Policy Inference from Demonstration of Assembly Tasks
    (Georgia Institute of Technology, 2012) Dantam, Neil ; Essa, Irfan ; Stilman, Mike ; Georgia Institute of Technology. Center for Robotics and Intelligent Machines
    We describe several algorithms used for the inference of linguistic robot policies from human demonstration. First, tracking and match objects using the Hungarian Algorithm. Then, we convert Regular Expressions to Nondeterministic Finite Automata (NFA) using the McNaughton-Yamada-Thompson Algorithm. Next, we use Subset Construction to convert to a Deterministic Finite Automaton. Finally, we minimize finite automata using either Hopcroft's Algorithm or Brzozowski's Algorithm.
  • Item
    Turning Paths Into Trajectories Using Parabolic Blends
    (Georgia Institute of Technology, 2011) Kunz, Tobias ; Stilman, Mike ; Georgia Institute of Technology. Center for Robotics and Intelligent Machines
    We present an approach for converting a path of multiple continuous linear segments into a trajectory that satisfies velocity and acceleration constraints and closely follows the given path without coming to a complete stop at every waypoint. Our method applies parabolic blends around waypoints to improve speed. In contrast to established methods that smooth trajectories with parabolic blends, our method does not require the timing of waypoints or durations of blend phases. This makes our approach particularly useful for robots that must follow kinematic paths that are not explicitly parametrized by time. Our method chooses timing automatically to achieve high performance while satisfying the velocity and acceleration constraints of a given robot.
  • Item
    Design and Development of a Dynamically-Balancing Holonomic Robot
    (Georgia Institute of Technology, 2011) Reynolds-Haertle, Saul ; Stilman, Mike ; Georgia Institute of Technology. Center for Robotics and Intelligent Machines
    This paper describes the design, control, and construction of Golem Wing, the first vehicle which both balances dynamically and has entirely holonomic ground movement. A nonstandard linear arrangement of mecanum wheels gives it the load-lifting, performance, and manipulation benefits of a dynamically-balancing platform without the maneuvering difficulties exhibited by previous balancing platforms. We show that the arrangement is capable of holonomic motion, describe a controller that maintains dynamic balance during holonomic motion, and show an implementation of the system in hardware that validate our assertions.
  • Item
    Kinematics and Inverse Kinematics for the Humanoid Robot HUBO2+
    (Georgia Institute of Technology, 2013) O’Flaherty, Rowland ; Vieira, Peter ; Grey, Michael ; Oh, Paul ; Bobick, Aaron F. ; Egerstedt, Magnus B. ; Stilman, Mike ; Georgia Institute of Technology. Center for Robotics and Intelligent Machines ; Georgia Institute of Technology. College of Computing
    This paper derives the forward and inverse kinematics of a humanoid robot. The specific humanoid that the derivation is for is a robot with 27 degrees of freedom but the procedure can be easily applied to other similar humanoid platforms. First, the forward and inverse kinematics are derived for the arms and legs. Then, the kinematics for the torso and the head are solved. Finally, the forward and inverse kinematic solutions for the whole body are derived using the kinematics of arms, legs, torso, and head.
  • Item
    Equations of Motion for Dynamically Stable Mobile Manipulators
    (Georgia Institute of Technology, 2010-12-14) Dantam, Neil ; Kolhe, Pushkar ; Stilman, Mike ; Georgia Institute of Technology. Center for Robotics and Intelligent Machines ; Georgia Institute of Technology. School of Interactive Computing