Organizational Unit:
Humanoid Robotics Laboratory

Research Organization Registry ID
Description
Previous Names
Parent Organization
Parent Organization
Includes Organization(s)
ArchiveSpace Name Record

Publication Search Results

Now showing 1 - 2 of 2
  • Item
    Optimized Control Strategies for Wheeled Humanoids and Mobile Manipulators
    (Georgia Institute of Technology, 2009-12) Stilman, Mike ; Wang, Jiuguang ; Teeyapan, Kasemsit ; Marceau, Ray
    Optimizing the control of articulated mobile robots leads to emergent behaviors that improve the effectiveness, efficiency and stability of wheeled humanoids and dynamically stable mobile manipulators. Our simulated results show that optimization over the target pose, height and control parameters results in effective strategies for standing, acceleration and deceleration. These strategies improve system performance by orders of magnitude over existing controllers. This paper presents a simple controller for robot motion and an optimization method for choosing its parameters. By using whole-body articulation, we achieve new skills such as standing and unprecedented levels of performance for acceleration and deceleration of the robot base. We describe a new control architecture, present a method for optimization, and illustrate its functionality through two distinct methods of simulation.
  • Item
    Robot Jenga: Autonomous and Strategic Block Extraction
    (Georgia Institute of Technology, 2009) Wang, Jiuguang ; Rogers, Philip ; Parker, Lonnie T. ; Brooks, Douglas Antwonne ; Stilman, Mike
    This paper describes our successful implementation of a robot that autonomously and strategically removes multiple blocks from an unstable Jenga tower. We present an integrated strategy for perception, planning and control that achieves repeatable performance in this challenging physical domain. In contrast to previous implementations, we rely only on low-cost, readily available system components and use strategic algorithms to resolve system uncertainty. We present a three-stage planner for block extraction which considers block selection, extraction order, and physics-based simulation that evaluates removability. Existing vision techniques are combined in a novel sequence for the identification and tracking of blocks within the tower. Discussion of our approach is presented following experimental results on a 5-DOF robot manipulator.