Organizational Unit:
School of Architecture

Research Organization Registry ID
Description
Previous Names
Parent Organization
Parent Organization
Organizational Unit
Includes Organization(s)

Publication Search Results

Now showing 1 - 3 of 3
  • Item
    The physical environment and patient safety: an investigation of physical environmental factors associated with patient falls
    (Georgia Institute of Technology, 2011-11-21) Choi, Young-Seon
    Patient falls are the most commonly reported "adverse events" in hospitals, according to studies conducted in the U.S. and elsewhere. The rate of falls is not high (2.3 to 7 falls per 1,000 patient days), but about a third of falls result in injuries or even death, and these preventable events drive up the cost of healthcare and, clearly, are harmful outcomes for the patients involved. This study of a private hospital, Dublin Methodist Hospital, in Dublin, Ohio analyzes data about patient falls and the facility's floor plans and design features and makes direct connections between hospital design and patient falls. This particular hospital, which was relatively recently constructed, offered particular advantages in investigating unit-layout-related environmental factors because of the very uniform configuration of its rooms, which greatly narrowed down the variables under study. This thesis investigated data about patients who had suffered falls as well as patients with similar characteristics (e.g., age, gender, and diagnosis) who did not suffer falls. This case-control study design helps limit differences between patients. Then patient data was correlated to the location of the fall and environmental characteristics of the locations, analyzed in terms of their layout and floor plan. A key part of this analysis was the development of tools to measure the visibility of the patient's head and body to nurses, the relative accessibility of the patient, the distance from the patient's room to the medication area, and the location of the bathroom in patient rooms (many falls apparently occur during travel to and from these areas). From the analysis of all this data there emerged a snapshot of the specific rooms in the hospital being analyzed where there was an elevated risk of a patient falling. While this finding is useful for the administrators of that particular facility, the study also developed a number of generally applicable conclusions. The most striking conclusion was that, for a number of reasons, patients whose heads were not visible from caregivers working from their seats in nurses' stations and/or from corridors had a higher risk of falling, in part because staff were unable to intervene in situations where a fall appeared likely to occur. This was also the case with accessibility; patients less accessible within a unit had a higher risk of falling. The implications for hospital design are clear: design inpatient floors to maximize a visible access to patients (especially their heads) from seats in nurses' stations and corridors.
  • Item
    An investigation on task interruptions and the physical environment for human performance
    (Georgia Institute of Technology, 2011-07-14) Seo, Hyun-Bo
    Many dangerous or tragic events such as airplane crashes and medical errors are often the result of human errors, and these errors are often the result of a professional worker being interrupted during a critical task. Although their impact can be serious, the ways that interruptions are affected by the physical environment have rarely been examined in the study of architecture. Therefore, this thesis investigates how the physical environment helps manage the interruptions by observing the process of medication administration by nurses in hospital units. Nurse shadowing observation data showed that the level of visibility of work areas in and around nurse stations significantly contributed to the number of interruptions initiated by others. Therefore, this thesis concludes that the physical environment affects interruption events and discusses the design implications of observation-based findings and the potential impact of the physical environment on major clinical errors. As for future directions for investigation, this thesis suggests that interruptions become a more prominent subject for consideration in architecture, and the physical environment as a subject for analyzing interruption and performance in human factors and health care.
  • Item
    Developing evidence based design metrics and methods for improving healthcare soundscapes
    (Georgia Institute of Technology, 2011-04-04) Okcu, Selen
    Healing and clinical work requires a complex choreography of architectural acoustic design in healthcare settings. In most healthcare settings, medical staff members conduct vital tasks that may have life-and-death implications. Patients visit the hospitals to heal. Their expectations include fast recovery, restful sleep, and privacy (i.e., speech privacy). However, sound environment qualities of the care settings often fall far from supporting the mission of hospitals. There is strong and growing evidence showing that effective soundscapes in healthcare settings potentially impact errors, healing and stress for patients, families and staff but it is still not clear what measures of the sound environment best predict key healthcare outcomes and what design strategies best impact those measures. By using a multi-method approach (i.e., objective and subjective noise level measurements, in-situ impulse response measurements, heuristic design analysis, theoretical studies, acoustic simulations and statistical analysis), this study aims to develop evidence based design strategies by statistically defining the relationships between three types of variables: (1) architectural floor-plate design metrics, (2) acoustic metrics, and (3) occupant response. The research is conducted in three phases. The first phase of the study compared the objective and subjective qualities of the hospital sound environments with different architectural designs, assessed the effectiveness of a newer acoustic metrics in capturing caregiver perceptions, and evaluated the impact of particular noise sources on caregiver outcomes. The second phase of the study tested the validity of an acoustic simulation tool in estimating the acoustic qualities of the healthcare soundscapes. The third phase of the study systematically explored the relationship between floor-plate design and acoustics of complex inter-connected nursing unit corridors. Even though the relationship between design and acoustics of proportional spaces (a.k.a. rooms with more traditional dimensions) has been well documented, the number of studies linking design and acoustics of complex non-proportional spaces such as inter-connected corridors still remains limited. The findings of the first phase show that critical care sound environments with different designs can vary drastically and impact caregivers` perceived wellbeing and task performance (e.g., patient auditory monitoring). Despite their extensive use, traditional noise metrics sometimes may not be effective in capturing unique characteristics of healthcare sound environments. This study validated the effectiveness of a new more detailed noise metric, "occurrence rate", in capturing the differences between acoustic characteristics of healthcare sound environments. Moreover, particular noise sources such as impulsive noises are likely to dominate the ICU sound environments and interfere with perceived caregiver health and performance. The findings of the second phase suggest the potential effectiveness of acoustic simulation tools (with hybrid prediction programs) in estimating the acoustic qualities of complex inter-connected hospital corridors. The findings of the third phase suggest the potential significant impact of design features of particular hallways (e.g., number of turns, corridor length, and number of branches) and overall floor-shape characteristics of inter-connected corridors (i.e., relative grid distance, and visual fragmentation) on reverberation time. Overall, in the units with shorter, more compact, fragmented corridors with multiple number of branching hallways, reverberation times are likely to be less. Moreover receivers located at the corridors with less number of turns from the sound source also potentially experience lower reverberation times. According to previous research, the human auditory system`s ability to monitor auditory cues is likely to be higher in the less reverberant sound environments.