Series
Master's Projects

Series Type
Publication Series
Description
Associated Organization(s)
Associated Organization(s)

Publication Search Results

Now showing 1 - 1 of 1
  • Item
    Evaluation of Deployable Aerosurface Systems for Mars Entry
    (Georgia Institute of Technology, 2012-12-14) Cruz-Ayoroa, Juan G.
    One of the challenges presented by the exploration of Mars is the entry, descent and landing (EDL) of payloads to the surface. Current robotic missions to Mars are reaching the limist of existing Viking heritage EDL technologies. A number of EDL technology improvements can be made to extend the capabilities beyond the current landed mass limits, including increasing the entry vehicle hypersonic drag and lift capability. Technologies being currently studied include inflatable aerodynamic decelerators, which are designed to increase vehicle drag. Many of these concepts center on axisymmetric designs, which provide high drag but relatively low lift and are most easily integrated to blunt entry vehicles. However, due to packaging density and launch vehicle fairing constraints, it is likely that future missions will require the use of slender bodies. This study investigates three deployable concepts designed to provide better integration into a slender vehicle while augmenting its performance by increasing its hypersonic drag. The deployable aerosurfaces are applied to a 5 meter diameter slender vehicle for a robotic mission at Mars with entry masses ranging from 10 to 60t. A multidisciplinary design optimization framework is used to estimate the landed mass capability of each system. Results show that the deployable concepts can significantly improve payload mass capability by reducing the terminal propulsion propellant required. Initial feasibility studies show that the concepts are hypersonically statically stable and comply with mechanical and thermal material capabilities