Title:
A Micromechanically-Informed Model of Thermal Spallation with Application to Propulsive Landing

Thumbnail Image
Author(s)
Hart, Kenneth Arthur
Authors
Advisor(s)
Rimoli, Julian J.
Advisor(s)
Editor(s)
Associated Organization(s)
Supplementary to
Abstract
During the propulsive landing of spacecraft, the retrorocket exhaust plume introduces the landing site surface to significant pressure and heating. Landing site materials include concrete on Earth and bedrock on other bodies, two highly brittle materials. During a landing event, defects and voids in the material grow due to thermal expansion and coalesce, causing the surface to disaggregate or spall. After a spall is freed from the surface, the material beneath it is exposed to the pressure and heat load until it spalls, continuing the cycle until engine shutdown. Spalls and debris entrained in the exhaust plume risk damaging the lander or nearby assets- a risk that increases for larger engines. The purpose of this work is to develop a micromechanically-informed model of thermal spallation to improve understanding of this process, in the context of propulsive landing. A preliminary simulation of landing site spallation, utilizing an empirical thermal spallation model, indicates that spallation may occur for human-scale Mars landers. This model, however, was developed for drilling through granite, which has a fundamentally different microstructure compared to typical landing sites, necessitating a more general approach. To that end, highly-detailed simulations of thermomechanical loading, applied to representative microstructures, inform a functional relationship between applied heat flux and spallation rate. These representative microstructures can be generated using an algorithm that has been validated for a wide variety of materials, including basalt from Gusev Crater, Mars.
Sponsor
Date Issued
2021-12-15
Extent
Resource Type
Text
Resource Subtype
Dissertation
Rights Statement
Rights URI