A Three Dimensional Heterogeneous Coarse Mesh Transport Method for Reactor Calculations

dc.contributor.advisor Rahnema, Farzad
dc.contributor.author Forget, Benoit en_US
dc.contributor.committeeMember Kocals, Jean
dc.contributor.committeeMember Morley, Thomas
dc.contributor.committeeMember Stacey, Weston
dc.contributor.committeeMember Wang, C-K Chris
dc.contributor.department Mechanical Engineering en_US
dc.date.accessioned 2007-08-16T17:55:35Z
dc.date.available 2007-08-16T17:55:35Z
dc.date.issued 2006-07-07 en_US
dc.description.abstract Current advancements in nuclear reactor core design are pushing reactor cores towards greater heterogeneity in an attempt to make nuclear power more sustainable in terms of fuel utilization and long-term disposal needs. These new designs are now being limited by the accuracy of the core simulators/methods. Increasing attention has been given to full core transport as the flux module in future core simulators. However, the current transport methods, due to their significant memory and computational time requirements, are not practical for whole core calculations. While most researchers are working on developing new acceleration and phase space parallelization techniques for the current fine mesh transport methods, this dissertation focuses on the development of a practical heterogeneous coarse mesh transport method. In this thesis, a heterogeneous coarse mesh transport method is extended from two to three dimensions in Cartesian geometry and new techniques are developed to reduce the strain on computational resources. The high efficiency of the method is achieved by decoupling the problem into a series of fixed source calculations in smaller sub-volume elements (e.g. coarse meshes). This decoupling lead to shifting the computation time to a priori calculations of response functions in unique sub-volumes in the system. Therefore, the method is well suited for large problems with repeated geometry such as those found in nuclear reactor cores. Even though the response functions can be generated with any available existing fine-mesh (deterministic or stochastic) code, a stochastic method was selected in this dissertation. Previous work in two dimensions used discrete polynomial expansions that are better suited for treating discrete variables found in pure deterministic transport methods. The amount of data needed to represent very heterogeneous problems accurately became quite large making the three dimensional extension impractical. The deterministic method was thus replaced by a stochastic response function generator making the transition to continuous variables fairly simple. This choice also improves the geometry handling capability of the coarse mesh method. en_US
dc.description.degree Ph.D. en_US
dc.identifier.uri http://hdl.handle.net/1853/16257
dc.publisher Georgia Institute of Technology en_US
dc.subject Transport theory en_US
dc.subject Coarse mesh methods en_US
dc.subject Monte Carlo method en_US
dc.subject Benchmark problems en_US
dc.title A Three Dimensional Heterogeneous Coarse Mesh Transport Method for Reactor Calculations en_US
dc.type Text
dc.type.genre Dissertation
dspace.entity.type Publication
local.contributor.advisor Rahnema, Farzad
local.contributor.corporatename George W. Woodruff School of Mechanical Engineering
local.contributor.corporatename College of Engineering
relation.isAdvisorOfPublication 1d96b222-d2f0-46d1-a0c7-4d1f9254dfab
relation.isOrgUnitOfPublication c01ff908-c25f-439b-bf10-a074ed886bb7
relation.isOrgUnitOfPublication 7c022d60-21d5-497c-b552-95e489a06569
Original bundle
Now showing 1 - 1 of 1
Thumbnail Image
1.26 MB
Adobe Portable Document Format