Title:
The Orbital Calibration 2 (OrCa2) CubeSat Mission

Thumbnail Image
Author(s)
Gunter, Brian C.
Gregoire, Alaric
Badura, Gregory
Valenta, Christopher
Authors
Advisor(s)
Advisor(s)
Editor(s)
Associated Organization(s)
Series
Supplementary to
Abstract
The Georgia Institute of Technology (Georgia Tech), in collaboration with the Georgia Tech Research Institute (GTRI), has developed the Orbital Calibration 2 (OrCa2) mission in an effort to improve space domain awareness. OrCa2’s external panels have precise and well-characterized reflective properties that will permit various calibration activities from ground-based optical sensors, with the goal of improving the tracking and detection of resident space objects (RSOs). OrCa2 is a 12U CubeSat designed, fabricated, assembled, and tested almost entirely in-house using GT/GTRI facilities. It will be regularly observed using Georgia Tech’s Space Object Research Telescope (GT-SORT). A number of experiments can be conducted with these measurements, such as pose estimation, validation of RSO trajectory propagations with complementary ground-based laser ranging data, multi-spectral analysis, low-light detection algorithms, and validation of atmospheric scattering models. An onboard imager will serve as both a low-accuracy star camera, as well as an on-orbit optical tracking system capable of RSO streak detection, with a mission goal of gathering simultaneous ground-based and space-borne tracking data of one or more RSOs. Additionally, the OrCa2 spacecraft will host an experimental radiation dosimeter, an experimental software defined radio (SDR) receiver, and an experimental power system. OrCa2 is currently manifested to launch in Q1 2024. An overview of the design, concept of operations, and expected outcomes of the mission will be presented.
Sponsor
Date Issued
2023-08
Extent
Resource Type
Text
Resource Subtype
Paper
Rights Statement
Unless otherwise noted, all materials are protected under U.S. Copyright Law and all rights are reserved