Title:
Study and Characterization on the Nanocomposite Underfill for Flip Chip Applications

dc.contributor.author Wong, C. P.
dc.contributor.author Sun, Yangyang
dc.contributor.author Zhang, Zhuqing
dc.date.accessioned 2008-10-07T19:37:18Z
dc.date.available 2008-10-07T19:37:18Z
dc.date.issued 2006-03
dc.description ©2006 IEEE. Personal use of this material is permitted. However, permission to reprint/republish this material for advertising or promotional purposes or for creating new collective works for resale or distribution to servers or lists, or to reuse any copyrighted component of this work in other works must be obtained from the IEEE. This material is presented to ensure timely dissemination of scholarly and technical work. Copyright and all rights therein are retained by authors or by other copyright holders. All persons copying this information are expected to adhere to the terms and constraints invoked by each author's copyright. In most cases, these works may not be reposted without the explicit permission of the copyright holder. en
dc.description.abstract The nanosilica filled composite is a promising material for the no-flow underfill in flip-chip application. However, as the filler size decreases into the nano length scale, the rheological, mechanical, and thermal mechanical properties of the composite change significantly. The filler–filler and filler–polymer interactions have a profound impact on the material properties. The purpose of this paper is to achieve an in-depth understanding of the effect of the filler size and surface treatment on material properties and therefore to design a nanocomposite formulation with desirable material properties for no-flow underfill applications. Mono-dispersed nanosilica filler of 100 nm in size were used in this study. An epoxy/anhydride mixture was used as the base resin formulation. The nanosilica fillers were incorporated into the resin mixture to different filler loadings from 5 wt% to 40 wt% with or without silane coupling agents as the surface treatment. UV-Visible spectroscopy showed that the underfills with nano-size filler were transparent in the visible region even at high filler loading. The curing behavior and the Tg of the nanocomposite were studied using a modulated differential scanning calorimerter. It was found that the presence of the nanosilica could hinder the curing reaction, especially at the late stage of cure. The Tgs of the nanocomposites with untreated silica were found to decrease with the increasing filler loading. The measurement of the dynamic moduli from dynamic mechanical analyzer indicated that there was a secondary relaxation related to the filler–polymer interface. The coefficient of thermal expansion of the nanocomposite was measured using a thermal mechanical analyzer. The rheology of the nanocomposite was studied using a stress rheometer. It was found that the filler treatment could significantly reduce the viscosity of the nanocomposite and improve the processing capability of the underfill. Density measurements and moisture absorption experiments both indicated that the addition of nanosilica could increase the free volume of materials. The dispersion of the nanosilica in the cured composite materials was observed using scanning electron microscopy. Control samples with micron-size silica fillers were formulated and characterized for comparison. en
dc.identifier.citation IEEE Transactions on Components and Packaging Technologies, Vol. 29, No. 1, 190-197 en
dc.identifier.uri http://hdl.handle.net/1853/25070
dc.language.iso en_US en
dc.publisher Georgia Institute of Technology en
dc.publisher.original Institute of Electrical and Electronics Engineers, Inc., New York
dc.subject Electronic packaging en
dc.subject Flip chip en
dc.subject Nanocomposite en
dc.subject No-flow en
dc.subject Silica en
dc.title Study and Characterization on the Nanocomposite Underfill for Flip Chip Applications en
dc.type Text
dc.type.genre Article
dspace.entity.type Publication
local.contributor.author Wong, C. P.
local.contributor.corporatename School of Materials Science and Engineering
local.contributor.corporatename College of Engineering
relation.isAuthorOfPublication 76540daf-1e96-4626-9ec1-bc8ed1f88e0a
relation.isOrgUnitOfPublication 21b5a45b-0b8a-4b69-a36b-6556f8426a35
relation.isOrgUnitOfPublication 7c022d60-21d5-497c-b552-95e489a06569
Files
Original bundle
Now showing 1 - 1 of 1
Thumbnail Image
Name:
CPWong_IEEE_2006_5.pdf
Size:
1.26 MB
Format:
Adobe Portable Document Format
Description:
License bundle
Now showing 1 - 1 of 1
No Thumbnail Available
Name:
license.txt
Size:
1.86 KB
Format:
Item-specific license agreed upon to submission
Description: