Title:
Development of empirical models for the analysis of multirotor aerodynamic interactions

Thumbnail Image
Author(s)
Marangoni, Gioele
Authors
Advisor(s)
Smith, Marilyn J.
Advisor(s)
Editor(s)
Associated Organization(s)
Supplementary to
Abstract
In the 21st century, the concept of Advanced Air Mobility (AAM) has emerged as a highly promising transportation solution for urban and regional areas, attracting considerable interest from both private companies and government agencies. In this dynamic and innovative environment, a multitude of new aerial vehicle designs is emerging. During the initial conceptual phase of designing a new vehicle, empirical methods based on institutional knowledge are typically employed, while Computational Fluid Dynamics (CFD) methods are reserved for later stages of the design process. This is because CFD tools require more detailed design information that is not available during the conceptual phase such as accurate Computer-Aided Design (CAD) models and properties of materials, which are typically obtained as the design progresses and becomes more refined. However, the novelty of these multirotor configurations poses unprecedented challenges due to the limited research, experimentation, and available data on the aerodynamic interactions among the rotors and the impact of various design choices on performance. In this context, traditional empirical methods do not prove effective as they fail to account for design choices unique to these new multirotor configurations and the aerodynamic interactions between the rotors. This can lead to costly redesigns and schedule delays. This effort proposed to conduct a parametric study of various eVTOL configurations, observe general trends and derive empirical-based models that can guide engineers in making informed configuration choices during the conceptual phase of a new vehicle design. To traverse a vast configuration design space quickly, the mid-fidelity analysis tool Comprehensive Hierarchical Aeromechanics Rotorcraft Model (CHARM) has been adopted. CHARM, which is based on lifting line and distorting wake methods, has demonstrated its capability in accurately predicting vehicle performance while maintaining cost-effectiveness in terms of setup and execution time. This approach is correlated with theory and experiment to build confidence in the analysis and conclusions.
Sponsor
Date Issued
2023-12-10
Extent
Resource Type
Text
Resource Subtype
Thesis
Rights Statement
Rights URI