Title:
A Threading-Based Method for the Prediction of DNABinding Proteins with Application to the Human GenomeProteins with Application to the Human Genome

Thumbnail Image
Author(s)
Gao, Mu
Skolnick, Jeffrey
Authors
Advisor(s)
Advisor(s)
Editor(s)
Associated Organization(s)
Organizational Unit
Organizational Unit
Series
Supplementary to
Abstract
Diverse mechanisms for DNA-protein recognition have been elucidated in numerous atomic complex structures from various protein families. These structural data provide an invaluable knowledge base not only for understanding DNA protein interactions, but also for developing specialized methods that predict the DNA-binding function from protein structure. While such methods are useful, a major limitation is that they require an experimental structure of the target as input. To overcome this obstacle, we develop a threading-based method, DNA-Binding-Domain-Threader (DBD-Threader, for the prediction of DNA-binding domains and associated DNA-binding protein residues. Our method, which uses a template library composed of DNA-protein complex structures, requires only the target protein’s sequence. In our approach,fold similarity and DNA-binding propensity are employed as two functional discriminating properties. In benchmark tests on 179 DNA-binding and 3,797 non-DNA-binding proteins, using templates whose sequence identity is less than 30% to the target, DBD-Threader achieves a sensitivity/precision of 56%/86%. This performance is considerably better than the standard sequence comparison method PSI-BLAST and is comparable to DBD-Hunter, which requires an experimental structure as input. Moreover, for over 70% of predicted DNA-binding domains, the backbone Root Mean Square Deviations (RMSDs) of the top-ranked structural models are within 6.5 A°of their experimental structures, with their associated DNA binding sites identified at satisfactory accuracy. Additionally, DBD-Threader correctly assigned the SCOP superfamily for most predicted domains. To demonstrate that DBD-Threader is useful for automatic function annotation on a large-scale, DBD-Threader was applied to 18,631 protein sequences from the human genome; 1,654 proteins are predicted to have DNA-binding function. Comparison with existing Gene Ontology (GO) annotations suggests that ,30% of our predictions are new. Finally, we present some interesting predictions in detail. In particular, it is estimated that 20% of classic zinc finger domains play a functional role not related to direct DNA-binding.
Sponsor
Date Issued
2009-11-13
Extent
Resource Type
Text
Resource Subtype
Article
Rights Statement
Rights URI