Title:
Palatability and chemical defenses of marine invertebrate larvae

dc.contributor.author Lindquist, Niels Lyle en_US
dc.contributor.author Hay, Mark E. en_US
dc.contributor.corporatename University of North Carolina at Chapel Hill. Institute of Marine Sciences en_US
dc.date.accessioned 2011-01-31T20:10:25Z
dc.date.available 2011-01-31T20:10:25Z
dc.date.issued 1996-11
dc.description DOI: 10.2307/2963489
dc.description © Ecological Society of America en_US
dc.description.abstract Risk of larval mortality is a critical component of models and debates concerning the ecology and evolution of the differing reproductive characteristics exhibited by marine invertebrates. In these discussions, predation often is assumed to be a major source of larval mortality. Despite limited empirical support, most marine larvae are thought to be palatable and broadly susceptible to generalist predators. Previous studies of larval—planktivore interactions have focused primarily on larvae that typically feed, grow, and develop for weeks to months in the plankton. Such planktotrophic species commonly produce large numbers of small larvae that disperse over vast distances. In contrast, the nonfeeding lecithotrophic larvae from sessile invertebrates that brood are often large and conspicuous, lack morphological defenses, and have limited dispersal distances because they typically are competent to settle minutes to hours after spawning. Interactions between lecithotrophic larvae and consumers are not well studied. This has limited the ability of previous authors to test broad generalities about marine larvae. We show that brooded larvae of Caribbean sponges (11 species) and gorgonians (three species) as well as brooded larvae of temperate hydroids (two species) and a bryozoan are unpalatable to co—occurring fishes. In contrast, brooded larvae of temperate ascidians (three species), a temperate sponge, and Caribbean hard corals (three species) are readily consumed by fishes, as are larvae from four of six species of synchronous broadcast—spawning gorgonians from the Florida Keys. Frequencies of survivorship for larvae attacked and rejected by fishes were high and statistically indistinguishable from frequencies for unattacked control larvae. Frequency of metamorphosis (when it occurred) of rejected larvae never differed significantly from that of unattacked control larvae. Assays testing for larval vs. adult chemical defenses for five species with distasteful larvae showed that larvae of all five species were chemically distasteful to fishes, whereas only three of five adult extracts deterred fish feeding. A comparison of larval palatability among chemically rich taxa showed that brooded larvae were significantly more likely to be unpalatable (86% of the species tested) than larvae of broadcasters (33%), and that palatable larvae were rarely released during the day (23%) while unpalatable larvae usually were (89%). Additionally, the frequency of bright coloration was high (60%) for unpalatable larvae and low (0%) for palatable larvae, suggesting that unpalatable larvae often may be aposematically colored. Results of this broad survey cast doubt on the widely accepted notion that virtually all marine larvae are suitable prey for most generalized planktivores. Among species that do not chemically or physically protect larvae against fishes, selection appears to favor the release of larvae at night, or the production of smaller more numerous offspring that grow and develop at sea as a way of escaping consumer—rich benthic habitats. Because distasteful larvae are not similarly constrained, distasteful species should exhibit reproductive and larval characteristics selected more by the fitness—related consequences of larval development mode and dispersal distance than by the necessity of avoiding benthic predators. Production of large larvae and retention of offspring in parental habitats that have proved to be suitable for growth and reproduction have both been proposed as advantageous, but these advantages often were assumed to be offset by losses due to increased larval apparency to fishes. This assumed trade—off is not mandatory because larvae can be defended chemically. Distasteful larvae tend to be conspicuous, localized dispersers that can co—occur with benthic fishes, and yet not be consumed. en_US
dc.identifier.citation Lindquist, Niels, and Mark E. Hay. 1996. Palatability and Chemical Defense of Marine Invertebrate Larvae. Ecological Monographs 66:431–450. en_US
dc.identifier.doi 10.2307/2963489
dc.identifier.issn 0012-9615
dc.identifier.uri http://hdl.handle.net/1853/36769
dc.language.iso en_US en_US
dc.publisher Georgia Institute of Technology en_US
dc.publisher.original Ecological Society of America
dc.subject Chemical defenses en_US
dc.subject Complex life cycles en_US
dc.subject Invertebrate larval defenses en_US
dc.subject Larval palatability en_US
dc.subject Life history patterns en_US
dc.title Palatability and chemical defenses of marine invertebrate larvae en_US
dc.type Text
dc.type.genre Article
dspace.entity.type Publication
local.contributor.author Hay, Mark E.
local.contributor.corporatename College of Sciences
local.contributor.corporatename School of Biological Sciences
relation.isAuthorOfPublication f3c1eedd-ee9e-4723-b2d5-c793a79b0bbf
relation.isOrgUnitOfPublication 85042be6-2d68-4e07-b384-e1f908fae48a
relation.isOrgUnitOfPublication c8b3bd08-9989-40d3-afe3-e0ad8d5c72b5
Files
Original bundle
Now showing 1 - 1 of 1
Thumbnail Image
Name:
sch_biol_hay_0099a.pdf
Size:
2.27 MB
Format:
Adobe Portable Document Format
Description: