Title:
Effects of composition and phonon scattering mechanisms on thermal transport in MFI zeolite films

Thumbnail Image
Author(s)
Hudiono, Yeny
Greenstein, Abraham
Saha-Kuete, Carine
Olson, Brandon
Graham, Samuel
Nair, Sankar
Authors
Advisor(s)
Advisor(s)
Editor(s)
Associated Organization(s)
Series
Supplementary to
Abstract
We report a systematic study that reveals the effect of composition (silicon-to-aluminum ratio) and the role of different phonon scattering processes on thermal transport in the nanoporous zeolite MFI. This is accomplished via synthesis of a series of films with graded compositions, thermal property measurements, and lattice dynamical modeling in the framework of the Boltzmann equation. MFI films with different Si/Al ratios (from infinity to 26) and constant (h0l) out-of-plane orientation were successfully synthesized by a seeded hydrothermal process. Three-omega measurements on these films allowed us to obtain comprehensive information on the thermal conductivity of MFI as a function of temperature (150-450 K) and Si/Al ratio. Detailed atomistic simulations (energy minimization and phonon dispersion calculations) were carried out for the MFI crystal structure with different Si/Al ratios and incorporated into a Boltzmann transport model along with approximate theoretical expressions for describing the rate of phonon scattering through umklapp, defect, and boundary scattering processes. The model predicts the observed thermal conductivity behavior very well across the entire range of temperature and composition investigated, with only a small number of fitting parameters of physical significance which allow us to distinguish the contributions of the different phonon scattering mechanisms. In particular, our results strongly suggest that the upper limit of thermal conductivity is defined by boundary-like scattering associated with the pore structure of the material. Below this limit, silicon substitution with aluminum allows considerable suppression of thermal conductivity by point defect scattering and a decrease in phonon velocity. These findings are important from the point of view of developing a robust platform for understanding thermal transport in complex crystalline materials with nanostructural features (such as an ordered nanopore network), which in turn serve as model systems for tuning of phonon transport properties in complex materials.
Sponsor
Date Issued
2007-09
Extent
Resource Type
Text
Resource Subtype
Article
Rights Statement
Rights URI