Title:
Supersonic Retropropulsion Technology for Application to High Mass Mars Entry, Descent, and Landing

dc.contributor.advisor Braun, Robert D.
dc.contributor.author Korzun, Ashley M.
dc.contributor.corporatename Georgia Institute of Technology. Space Systems Design Lab
dc.date.accessioned 2024-02-16T17:04:13Z
dc.date.available 2024-02-16T17:04:13Z
dc.date.issued 2008-04-30
dc.description AE 8900 MS Special Problems Report
dc.description.abstract As vehicle masses continue to increase for missions involving atmospheric entry, supersonic deceleration is challenging the qualifications and capabilities of Viking-heritage entry, descent, and landing (EDL) technology. At Mars, high entry masses and insufficient atmospheric density often result in unacceptable parachute deployment and operating conditions, requiring the exploration of alternative approaches to supersonic deceleration. Supersonic retropropulsion, the initiation of a retropropulsion phase while the vehicle is still traveling supersonically, may be an enabling technology for systems with high ballistic coefficients operating in thin atmospheres such as at Mars. The relevance of this technology to the feasibility of Mars EDL has been shown to increase with ballistic coefficient to the point that it is likely required for human Mars exploration. In conjunction with a literature review of supersonic retropropulsion technology as it applies to blunt body entry vehicles, a systems study was performed to assess the impact of supersonic retropropulsion on high mass Mars EDL. This investigation addresses the applicability, limitations, and performance implications of supersonic retropropulsion technology in the context of future human and robotic Mars exploration missions.
dc.identifier.uri https://hdl.handle.net/1853/73422
dc.publisher Georgia Institute of Technology
dc.rights Unless otherwise noted, all materials are protected under U.S. Copyright Law and all rights are reserved
dc.rights.metadata https://creativecommons.org/publicdomain/zero/1.0/
dc.rights.uri https://rightsstatements.org/page/InC/1.0/?language=en
dc.title Supersonic Retropropulsion Technology for Application to High Mass Mars Entry, Descent, and Landing
dc.type Text
dc.type.genre Masters Project
dspace.entity.type Publication
local.contributor.corporatename Space Systems Design Laboratory (SSDL)
local.contributor.corporatename Daniel Guggenheim School of Aerospace Engineering
local.relation.ispartofseries Master's Projects
local.relation.ispartofseries Master of Science in Aerospace Engineering
relation.isOrgUnitOfPublication dc68da3d-4cfe-4508-a4b0-35ba8de923fb
relation.isOrgUnitOfPublication a348b767-ea7e-4789-af1f-1f1d5925fb65
relation.isSeriesOfPublication 09b1c264-93da-4a60-8e57-4eecff715bc6
relation.isSeriesOfPublication 09844fbb-b7d9-45e2-95de-849e434a6abc
Files
Original bundle
Now showing 1 - 1 of 1
Thumbnail Image
Name:
KorzunA-8900.pdf
Size:
3.25 MB
Format:
Adobe Portable Document Format
Description: