Title:
Solution-based synthesis and processing of nanocrystalline ZrB₂-based composites
Solution-based synthesis and processing of nanocrystalline ZrB₂-based composites
Authors
Xie, Yanli
Authors
Advisors
Speyer, Robert F.
Sanders, Thomas H., Jr.
Sanders, Thomas H., Jr.
Advisors
Person
Associated Organizations
Organizational Unit
Organizational Unit
Series
Collections
Supplementary to
Permanent Link
Abstract
Zirconium- and tantalum-based diborides, and diboride/carbide composites are of interest for ultra-high temperature applications requiring improved thermomechanical and thermochemical stability. This thesis focuses on the synthesis, processing and sintering of nanocrystalline powders with Zr- and Ta-based diboride/carbide/silicide compositions. A solution-based processing method was developed to prepare reactive mixtures that were precursors for ZrB₂-based powders. The precursors reacted to form the ceramic powders after suitable pyrolysis and borothermal/carbothermal reduction heat treatments. Single-phase ZrB₂ powders were prepared with initial composition of C/Zr = 4.8 and B/Zr = 3.0. ZrB₂-based composite powders with ZrC, ZrO₂, TaB₂, TaC, SiC, TaSi₂ and B₄C were prepared with particle sizes of 10-500 nm for different phases based SEM micrographs. The composite powders were highly sinterable with proper processing methods developed to avoid and remove oxide impurities. The relative densities of ZrB₂/B₄C, ZrB₂/TaB₂, ZrB₂/TaB₂/B4C, ZrB₂/TaSi₂ were in the range of 91%-97% after pressureless sintering at 2020 ℃
for 1 h or 30 min.
Sponsor
Date Issued
2008-11-24
Extent
Resource Type
Text
Resource Subtype
Dissertation