Title:
Wall-models for large eddy simulation based on a generic additive-filter formulation

Thumbnail Image
Author(s)
Sánchez Rocha, Martín
Authors
Advisor(s)
Menon, Suresh
Advisor(s)
Person
Editor(s)
Associated Organization(s)
Supplementary to
Abstract
In this work, the mathematical implications of merging two different turbulence modeling approaches are addressed by deriving the exact hybrid RANS/LES Navier-Stokes equations. These equations are derived by introducing an additive-filter, which linearly combines the RANS and LES operators with a blending function. The equations derived predict additional hybrid terms, which represent the interactions between RANS and LES formulations. Theoretically, the prediction of the hybrid terms demonstrates that the hybridization of the two approaches cannot be accomplished only by the turbulence model equations, as it is claimed in current hybrid RANS/LES models. The importance of the exact hybrid RANS/LES equations is demonstrated by conducting numerical calculations on a turbulent flat-plate boundary layer. Results indicate that the hybrid terms help to maintain an equilibrated model transition when the hybrid formulation switches from RANS to LES. Results also indicate, that when the hybrid terms are not included, the accuracy of the calculations strongly relies on the blending function implemented in the additive-filter. On the other hand, if the exact equations are resolved, results are only weakly affected by the characteristics of the blending function. Unfortunately, for practical applications the hybrid terms cannot be exactly computed. Consequently, a reconstruction procedure is proposed to approximate these terms. Results show, that the model proposed is able to mimic the exact hybrid terms, enhancing the accuracy of current hybrid RANS/LES approaches. In a second effort, the Two Level Simulation (TLS) approach is proposed as a near-wall model for LES. Here, TLS is first extended to compressible flows by deriving the small-scale equations required by the model. The full compressible TLS formulation and the hybrid TLS/LES approach is validated simulating the flow over a flat-plate turbulent boundary layer. Overall, results are found in reasonable agreement with experimental data and LES calculations.
Sponsor
Date Issued
2008-12-19
Extent
Resource Type
Text
Resource Subtype
Dissertation
Rights Statement
Rights URI