Effects of Aero-Propulsive Interactions for Various Wing Integration Techniques on Electric Ducted Fan Performance

Thumbnail Image
Safieh Matheu, Derek Anthony
Rauleder, Juergen
Associated Organization(s)
Supplementary to
This study explores the aero-propulsive coupling effects of wing blended electric ducted fans (EDF) lifting systems over the EDF unit. Wing blended EDFs and isolated EDF are on the rise as a solution to increase efficiency on regional mobility platforms. Electrification of platforms has permitted the introduction of novel integration concepts that use phenomena like BLI to enhance their performance. The lack of complex mechanical links permits designers to place propulsive devices practically anywhere on the aircraft, opening opportunities for research and development. As noted in the literature review section, little attention has been given to understanding the effects of novel integrations on the EDF. This experimental study aims to examine two edge cases: the leading edge integration and the trailing edge integration. The leading edge integration studied in this work is characterized by having the leading edge of the inlet of the EDF and the leading edge of the wing flushed. The trailing edge features the EDF mounted with the exhaust of the duct flushed with the wing’s trailing edge; the angle between the freestream and the EDF is parallel. The duct is translated vertically so that the inlet of the trailing edge EDF is tangent with the wing’s surface. Note that this is not an optimization study; simplified integrations that represent the generalized qualities of each integration were adopted. What is novel about the research is that the EDF forces are decoupled from the system loads, providing unprecedented insight into each integration’s effects on the EDF itself. The study was formed by three major test rigs described in the methodology section. The first rig was designed to test EDFs in isolation at various angles of attack. In this test, various sizes of EDFs were tested with a common duct geometry; the sizes ranged from 51 cm2 fan-swept area to 215 cm2 fan-swept area. The EDFs were tested between the cruise condition, edgewise flight, and descent stages; performance data and 6 forces and moments are explored in the results section. The second rig focused on studying the integration of the EDF in both cases, but by introducing a symmetric airfoil design, the upper surface and lower surface integration was studied. This rig permitted to study such configuration in the low-turbulence tunnel at lower airspeeds and mostly the cruise condition. For these tests, a Clark-Y duct shape coupled with Schuebeler Technologies DS51-HST formed the EDF system. These tests provided insight into all 4 possible integration edge cases and presented interesting findings on pitching moment, thrust output, and performance effects that the integration had on the EDF. The last test rig focused on studying the EDF integration in a more realistic platform (slimmer airfoil) and studying the transition cases, cruise flight, wing stall scenario, and high angles of attack. This test rig was placed in the Low Turbulence Wind Tunnel and the Harper Wind Tunnel. The tests in the low turbulence tunnel focused on edgewise flight, early transition, and the descent cases, studying airspeeds between 2 m/s and 10 m/s. The tests on the Harper Wind Tunnel study the integration in cruise and wing stall conditions at airspeeds between 10 m/s and 20 m/s. In that test, the performance, thrust output, and normal force generated by the duct are investigated.
Date Issued
Resource Type
Resource Subtype
Rights Statement
Rights URI