Person:
Dellaert, Frank

Associated Organization(s)
Organizational Unit
ORCID
ArchiveSpace Name Record

Publication Search Results

Now showing 1 - 3 of 3
  • Item
    DDF-SAM 2.0: Consistent Distributed Smoothing and Mapping
    (Georgia Institute of Technology, 2013-05) Cunningham, Alexander ; Indelman, Vadim ; Dellaert, Frank
    This paper presents an consistent decentralized data fusion approach for robust multi-robot SLAM in dan- gerous, unknown environments. The DDF-SAM 2.0 approach extends our previous work by combining local and neigh- borhood information in a single, consistent augmented local map, without the overly conservative approach to avoiding information double-counting in the previous DDF-SAM algo- rithm. We introduce the anti-factor as a means to subtract information in graphical SLAM systems, and illustrate its use to both replace information in an incremental solver and to cancel out neighborhood information from shared summarized maps. This paper presents and compares three summarization techniques, with two exact approaches and an approximation. We evaluated the proposed system in a synthetic example and show the augmented local system and the associated summarization technique do not double-count information, while keeping performance tractable.
  • Item
    Learning Visibility of Landmarks for Vision-Based Localization
    (Georgia Institute of Technology, 2010) Alcantarilla, Pablo F. ; Oh, Sang Min ; Mariottini, Gian Luca ; Bergasa, Luis M. ; Dellaert, Frank
    We aim to perform robust and fast vision-based localization using a pre-existing large map of the scene. A key step in localization is associating the features extracted from the image with the map elements at the current location. Although the problem of data association has greatly benefited from recent advances in appearance-based matching methods, less attention has been paid to the effective use of the geometric relations between the 3D map and the camera in the matching process. In this paper we propose to exploit the geometric relationship between the 3D map and the camera pose to determine the visibility of the features. In our approach, we model the visibility of every map feature w.r.t. the camera pose using a non-parametric distribution model. We learn these non-parametric distributions during the 3D reconstruction process, and develop efficient algorithms to predict the visibility of features during localization. With this approach, the matching process only uses those map features with the highest visibility score, yielding a much faster algorithm and superior localization results. We demonstrate an integrated system based on the proposed idea and highlight its potential benefits for the localization in large and cluttered environments.
  • Item
    DDF-SAM: Fully Distributed SLAM using Constrained Factor Graphs
    (Georgia Institute of Technology, 2010) Cunningham, Alexander ; Paluri, Manohar ; Dellaert, Frank
    We address the problem of multi-robot distributed SLAM with an extended Smoothing and Mapping (SAM) approach to implement Decentralized Data Fusion (DDF). We present DDF-SAM, a novel method for efficiently and robustly distributing map information across a team of robots, to achieve scalability in computational cost and in communication bandwidth and robustness to node failure and to changes in network topology. DDF-SAM consists of three modules: (1) a local optimization module to execute single-robot SAM and condense the local graph; (2) a communication module to collect and propagate condensed local graphs to other robots, and (3) a neighborhood graph optimizer module to combine local graphs into maps describing the neighborhood of a robot. We demonstrate scalability and robustness through a simulated example, in which inference is consistently faster than a comparable naive approach.